• Title/Summary/Keyword: Underwater map

Search Result 40, Processing Time 0.026 seconds

Experimental Result on Map Expansion of Underwater Robot Using Acoustic Range Sonar (수중 초음파 거리 센서를 이용한 수중 로봇의 2차원 지도 확장 실험)

  • Lee, Yeongjun;Choi, Jinwoo;Lee, Yoongeon;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • This study focuses on autonomous exploration based on map expansion for an underwater robot equipped with acoustic sonars. Map expansion is applicable to large-area mapping, but it may affect localization accuracy. Thus, as the key contribution of this paper, we propose a method for underwater autonomous exploration wherein the robot determines the trade-off between map expansion ratio and position accuracy, selects which of the two has higher priority, and then moves to a mission step. An occupancy grid map is synthesized by utilizing the measurements of an acoustic range sonar that determines the probability of occupancy. This information is then used to determine a path to the frontier, which becomes the new search point. During area searching and map building, the robot revisits artificial landmarks to improve its position accuracy as based on imaging sonar-based recognition and EKF-SLAM if the position accuracy is above the predetermined threshold. Additionally, real-time experiments were conducted by using an underwater robot, yShark, to validate the proposed method, and the analysis of the results is discussed herein.

Restoration of underwater images using depth and transmission map estimation, with attenuation priors

  • Jarina, Raihan A.;Abas, P.G. Emeroylariffion;De Silva, Liyanage C.
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.331-351
    • /
    • 2021
  • Underwater images are very much different from images taken on land, due to the presence of a higher disturbance ratio caused by the presence of water medium between the camera and the target object. These distortions and noises result in unclear details and reduced quality of the output image. An underwater image restoration method is proposed in this paper, which uses blurriness information, background light neutralization information, and red-light intensity to estimate depth. The transmission map is then estimated using the derived depth map, by considering separate attenuation coefficients for direct and backscattered signals. The estimated transmission map and estimated background light are then used to recover the scene radiance. Qualitative and quantitative analysis have been used to compare the performance of the proposed method against other state-of-the-art restoration methods. It has been shown that the proposed method can yield good quality restored underwater images. The proposed method has also been evaluated using different qualitative metrics, and results have shown that method is highly capable of restoring underwater images with different conditions. The results are significant and show the applicability of the proposed method for underwater image restoration work.

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

Target Emphasis Algorithm in Image for Underwater Acoustic Signal Using Weighted Map (가중치 맵을 이용한 수중 음향 신호 영상에서의 표적 강화 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • In this paper, we convert underwater acoustic signal made by sonar system into digital image. We propose the algorithm that detects target candidate and emphasizes information of target introducing image processing technique for the digital image. The process detecting underwater target estimates background noise in underwater acoustic signal changing irregularly, recomposes it. and eliminates background from original image. Therefore, it generates initial target group. Also, it generates weighted map through proceeding doppler information, ensures information for target candidate through filtering using weighted map for image eliminated background noise, and decides the target candidate area in the single frame. In this paper, we verified that proposed algorithm almost had eliminated the noise generated irregularly in underwater acoustic signal made by simulation, targets had been displayed more surely in the image of underwater acoustic signal through filtering and process of target detection.

Development of 3D-Map Software for Ship Hull in Underwater (선박 수중 3D 입체 지도 소프트웨어 개발)

  • Oh, Mal-Geun;Kim, Hong-Ryeol;Hong, Sung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.343-347
    • /
    • 2020
  • This paper presents the development of a software for tracking the location of objects in the water and for creating a three-dimensional hull map. The objective of this software, as a software for underwater hull cleaning robot, is to map the location of underwater hull cleaning robot and to locate the position of sensor by identifying the shaded area of acoustic communication. For the software designed for mapping the location of cleaning robot in the water, the height and intensity were applied as variables for underwater ultrasonic communication. The software for creating a three-dimensional hull was developed by OpenGL using scanned lines from a blueprint of a ship. This software can help identifying the location of underwater hull cleaning robot without actual visibility and can be used to maintain a stable communication status by locating the position of sensor by easily spotting the shaded area of acoustic communication caused by the curved area of the bottom of the ship.

Image Mosaicking Considering Pairwise Registrability in Structure Inspection with Underwater Robots (수중 로봇을 이용한 구조물 검사에서의 상호 정합도를 고려한 영상 모자이킹)

  • Hong, Seonghun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.238-244
    • /
    • 2021
  • Image mosaicking is a common and useful technique to visualize a global map by stitching a large number of local images obtained from visual surveys in underwater environments. In particular, visual inspection of underwater structures using underwater robots can be a potential application for image mosaicking. Feature-based pairwise image registration is a commonly employed process in most image mosaicking algorithms to estimate visual odometry information between compared images. However, visual features are not always uniformly distributed on the surface of underwater structures, and thus the performance of image registration can vary significantly, which results in unnecessary computations in image matching for poor-conditioned image pairs. This study proposes a pairwise registrability measure to select informative image pairs and to improve the overall computational efficiency of underwater image mosaicking algorithms. The validity and effectiveness of the image mosaicking algorithm considering the pairwise registrability are demonstrated using an experimental dataset obtained with a full-scale ship in a real sea environment.

Underwater Magnetic Field Mapping Using an Autonomous Surface Vehicle (자율수상선을 이용한 수중 자기장 지도 작성)

  • Jung, Jongdae;Park, Jeonghong;Choi, Jinwoo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2018
  • Geomagnetic field signals have potential for use in underwater navigation and geophysical surveys. To map underwater geomagnetic fields, we propose a method that exploits an autonomous surface vehicle. In our system, a magnetometer is rigidly attached to the vehicle and not towed by a cable, minimizing the system's size and complexity but requiring a dedicated calibration procedure due to magnetic distortion caused by the vehicle. Conventional 2D methods can be employed for the calibration by assuming the horizontal movement of the magnetometer, whereas the proposed 3D approach can correct for horizontal misalignment of the sensor. Our method does not require a supporting crane system to rotate the vehicle, and calibrates and maps simultaneously by exploiting data obtained from field operation. The proposed method has been verified experimentally in inland waters, generating a magnetic field map of the test area that is of much higher resolution than the public magnetic field data.

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

Study on Distortion Compensation of Underwater Archaeological Images Acquired through a Fisheye Lens and Practical Suggestions for Underwater Photography - A Case of Taean Mado Shipwreck No. 1 and No. 2 -

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.312-321
    • /
    • 2021
  • Underwater archaeology relies heavily on photography and video image recording during surveillances and excavations like ordinary archaeological studies on land. All underwater images suffer poor image quality and distortions due to poor visibility, low contrast and blur, caused by differences in refractive indices of water and air, properties of selected lenses and shapes of viewports. In the Yellow Sea (between mainland China and the Korean peninsula), the visibility underwater is far less than 1 m, typically in the range of 30 cm to 50 cm, on even a clear day, due to very high turbidity. For photographing 1 m x 1 m grids underwater, a very wide view angle (180°) fisheye lens with an 8 mm focal length is intentionally used despite unwanted severe barrel-shaped image distortion, even with a dome port camera housing. It is very difficult to map wide underwater archaeological excavation sites by combining severely distorted images. Development of practical compensation methods for distorted underwater images acquired through the fisheye lens is strongly desired. In this study, the source of image distortion in underwater photography is investigated. We have identified the source of image distortion as the mismatching, in optical axis and focal points, between dome port housing and fisheye lens. A practical image distortion compensation method, using customized image processing software, was explored and verified using archived underwater excavation images for effectiveness in underwater archaeological applications. To minimize unusable area due to severe distortion after distortion compensation, practical underwater photography guidelines are suggested.

3-D Underwater Object Recognition Using PZT-Epoxy 3-3 Type Composite Ultrasonic Transducers (PZT-에폭시 3-3형 복합압전체 초음파 트랜스듀서를 사용한 3차원 수중 물체인식)

  • Cho, Hyun-Chul;Heo, Jin;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.286-294
    • /
    • 2001
  • In this study, 3-D underwater object recognition using the self-made 3-3 type composite ultrasonic transducer and modified SOFM(Self Organizing Feature Map) neural network are investigated. Properties of the self-made 3-3 type composite specimens are satisfied considerably with requirements as an underwater ultrasonic transducer's materials. 3-D underwater all object's recognition rates obtained from both the training data and testing data in different objects, such as a rectangular block, regular triangular block, square block and cylinderical block, were 100% and 94.0%, respectively. All object's recognition rates are obtained by utilizing the self-made 3-3 type composite transducer and SOFM neural network. From the object recognition rates, it could be seen that an ultrasonic transducer fabricated with the self-made 3-3 type composite resonator will be able to have application for the underwater object recognition.

  • PDF