In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.
Park, Sangchul;Park, Yeongbin;Jang, Soyeong;Kim, Tae-Ho
Korean Journal of Remote Sensing
/
v.38
no.6_1
/
pp.1463-1478
/
2022
Maritime transport accounts for 99.7% of the exports and imports of the Republic of Korea; therefore, developing a vessel monitoring system for efficient operation is of significant interest. Several studies have focused on tracking and monitoring vessel movements based on automatic identification system (AIS) data; however, ships without AIS have limited monitoring and tracking ability. High-resolution optical satellite images can provide the missing layer of information in AIS-based monitoring systems because they can identify non-AIS vessels and small ships over a wide range. Therefore, it is necessary to investigate vessel monitoring and small vessel classification systems using high-resolution optical satellite images. This study examined the possibility of developing ship monitoring systems using Compact Advanced Satellite 500-1 (CAS500-1) satellite images by first training a deep learning model using satellite image data and then performing detection in other images. To determine the effectiveness of the proposed method, the learning data was acquired from ships in the Yellow Sea and its major ports, and the detection model was established using the You Only Look Once (YOLO) algorithm. The ship detection performance was evaluated for a domestic and an international port. The results obtained using the detection model in ships in the anchorage and berth areas were compared with the ship classification information obtained using AIS, and an accuracy of 85.5% and 70% was achieved using domestic and international classification models, respectively. The results indicate that high-resolution satellite images can be used in mooring ships for vessel monitoring. The developed approach can potentially be used in vessel tracking and monitoring systems at major ports around the world if the accuracy of the detection model is improved through continuous learning data construction.
Objectives : The multimodal telepresence systems have been adopted in a variety of applications, such as telemedicine, space or underwater teleoperation and videoconference. Multimedia, one of the telepresence systems, has been used in various fields including entertainment, education and communication. The degree of subjective telepresence is defined as the probability that a person perceives to be physically in the remote place when he/she experiences a multisensory feedback from the multimedia. The current study aimed to explore the neural mechanism of telepresence related to multisensory feedback in patients with schizophrenia. Methods : Brain activity was measured using functional magnetic resonance imaging while fifteen healthy controls and fifteen patients with schizophrenia were experiencing filmed referential conversation at various distances (1 m, 5 m and 10 m). Correlations between the image contrast values and the telepresence scores were analyzed. Results : Subjective telepresence was not significantly different between the two groups. Some significant correlations of brain activities with the telepresence scores were found in the left postcentral gyrus, bilateral inferior frontal gyri, right fusiform gyrus, and left superior temporal sulcus. There were no main effects of group and distance. Conclusion : These results suggest that patients with schizophrenia experience telepresence as appropriately as healthy people do when exposed to multimedia. Therefore, patients with schizophrenia would have no difficulty in immersing themselves in multimedia which may be used in clinical training therapies.
SeaBeam2000, a multibeam echo sounder, is a new generation seabed mapping system of which a single swath covers an angular range of -60.deg. to 60.deg. from the vertical direction with 121 beams. It provides high-density and high-quality bathymetric data along with sidescan acoustic data. The purpose of the research is to develop a system for processing multibeam underwater acoustic and bathymetric data using digital signal processing techniques. Recently obtained multibeam echo sounder data covering a survey area in the East Sea of Korea ($37{\circ}$.00'N to $37{\circ}$30'N and $129{\circ}$40'E to $130{\circ}$30'E) are preliminarily processed using the developed system and reproduced in the raster image format as well as three dimensionally visualized form.
Journal of the Korean Society of Propulsion Engineers
/
v.19
no.3
/
pp.9-19
/
2015
Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.
Various sizes of ROVs are being utilized in offshore industrial, scientific, and military applications all around the world. Because of innovative developments in science and technology, image acquisition devices such as sonar devices and cameras have been reduced in size and their performance has been improved. Thus, we can expect better accuracy and higher resolution even in the case of exploration using a small ROV. The purpose of this paper is to prepare a standard procedure for the identification of unidentified hazardous materials found during the National Oceanographic Survey. In this paper, we propose an IDEF (Integrated DEFinition) method modeling technique to identify unidentified targets using a small ROV. In accordance with the proposed procedure, an ROV survey was carried out on target No.16 with a four-ton-class fishing boat as a support vessel on September 18th of 2018 in the sea near Daebu Island. Unidentified targets, which were not known by the multi-beam data obtained from the ship, could be identified as concrete pipes by analyzing the HD camera and high-resolution sonar images acquired by the ROV. The whole proposed procedure could be verified, and the survey with the small ROV required about 10 days to identify the target in one place.
International journal of advanced smart convergence
/
v.12
no.4
/
pp.208-216
/
2023
The purpose of our study is to design datasets for Artificial Intelligence learning for cold sea fish farming. Salmon is considered one of the most popular fish species among men and women of all ages, but most supplies depend on imports. Recently, salmon farming, which is rapidly emerging as a specialized industry in Gangwon-do, has attracted attention. Therefore, in order to successfully develop salmon farming, the need to systematically build data related to salmon and salmon farming and use it to develop aquaculture techniques is raised. Meanwhile, the catch of pollack continues to decrease. Efforts should be made to improve the major factors affecting pollack survival based on data, as well as increasing the discharge volume for resource recovery. To this end, it is necessary to systematically collect and analyze data related to pollack catch and ecology to prepare a sustainable resource management strategy. Image data was obtained using CCTV and underwater cameras to establish an intelligent aquaculture strategy for salmon and pollock, which are considered representative fish species in Gangwon-do. Using these data, we built learning data suitable for AI analysis and prediction. Such data construction can be used to develop models for predicting the growth of salmon and pollack, and to develop algorithms for AI services that can predict water temperature, one of the key variables that determine the survival rate of pollack. This in turn will enable intelligent aquaculture and resource management taking into account the ecological characteristics of fish species. These studies look forward to achievements on an important level for sustainable fisheries and fisheries resource management.
We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.
Currently, the domestic aquaculture industry is pursuing smartization, but it is still proceeding with human subjective judgment in many processes in the aquaculture stage. The prerequisite for the smart aquaculture industry is to effectively grasp the condition of fish in the farm. If real-time monitoring is possible by identifying the number of fish populations, size, pathways, and speed of movement, various forms of automation such as automatic feed supply and disease determination can be carried out. In this study, we proposed an algorithm to identify the state of fish in real time using underwater video data. The fish detection performance was compared and evaluated by applying the latest deep learning-based object detection models, and an algorithm was proposed to measure fish object identification, path tracking, and moving speed in continuous image frames in the video using the fish detection results. The proposed algorithm showed 92% object detection performance (based on F1-score), and it was confirmed that it effectively tracks a large number of fish objects in real time on the actual test video. It is expected that the algorithm proposed in this paper can be effectively used in various smart farming technologies such as automatic feed feeding and fish disease prediction in the future.
Clouds or shadows are the most problematic when monitoring crops using optical satellite images. To reduce this effect, a composite algorithm was used to select the maximum Normalized Difference Vegetation Index (NDVI) for a certain period. This Maximum NDVI Composite (MNC) method reduces the influence of clouds, but since only the maximum NDVI value is used for a certain period, it is difficult to show the phenomenon immediately when the NDVI decreases. As a way to maintain the spectral information of crop as much as possible while minimizing the influence of clouds, a Score-Based Composite (SBC) algorithm was proposed, which is a method of selecting the most suitable pixels by defining various environmental factors and assigning scores to them when compositing. In this study, the Sentinel-2A/B Level 2A reflectance image and cloud, shadow, Aerosol Optical Thickness(AOT), obtainging date, sensor zenith angle provided as additional information were used for the SBC algorithm. As a result of applying the SBC algorithm with a 15-day and a monthly period for Dangjin rice fields and Taebaek highland cabbage fields in 2021, the 15-day period composited data showed faster detailed changes in NDVI than the monthly composited results, except for the rainy season affected by clouds. In certain images, a spatially heterogeneous part is seen due to partial date-by-date differences in the composited NDVI image, which is considered to be due to the inaccuracy of the cloud and shadow information used. In the future, we plan to improve the accuracy of input information and perform quantitative comparison with MNC-based composite algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.