• Title/Summary/Keyword: Underwater flight vehicle

Search Result 17, Processing Time 0.024 seconds

A Study on a Intelligence Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 지능형 심도 제어에 관한 연구)

  • 김현식;황수복;신용구;최중락
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.30-41
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, It needs a robust performance which can get over the nonlinear characteristics due to hull shape. Second, It needs an accurate performance which has the small overshoot phenomenon and steady state error to avoid colliding with ground surface and obstacles. Third, It needs a continuous control input to reduce the acoustic noise. Finally, It needs an effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose a Intelligence depth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed control scheme has robust and accurate performance by continuous control input and has no speed dependency problem.

  • PDF

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok;Sur, Joo-No
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • In real system application, the 3-D obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: the sonar offers the range/bearing information of obstacles in a local detection area, it requires the system that has reduced acoustic noise and power consumption in terms of the autonomous underwater vehicle (AUV), it has the UFV operation constraints such as maximum pitch and depth, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent 3-D obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the 3-D obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

A Study on the Fuzzy-PID Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 퍼지-PID 심도 제어에 관한 연구)

  • 김현식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2000
  • In Underwater Flight Vehicle depth control system, the followings must be required. Firstly, It need robust depth control performance which can get over parameter variation, modeling error and disturbance. Secondly, It need no oveshoot phenomenon to avoid colliding with ground surface and obstables. Thirdly, It need continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, It need effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose the Fuzzy-PID depth controller with the control parameter interpolators. Simulation results show the proposed control scheme has robust and accurate performance with continuous control input.

  • PDF

Adaptive Blowing Control Algorithm for Autonomous Control of Underwater Flight Vehicle (수중 비행체의 자율제어를 위한 적응 부상 제어 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.482-487
    • /
    • 2008
  • In case of flooding, the underwater flight vehicle (UFV) executes the blowing by blowing ballast tanks off using high pressure air (HPA), while it also uses control planes and a propulsion unit to reduce the overshoot depth caused by a flooding and blowing sequence. However, the conventional whole HPA blow-off method lets the body on the surface after blowing despite slight flooding. This results in the unnecessary mission failure or body exposure. Therefore, it is necessary to keep the body at the near surface by the blowing control while reducing the overshoot depth. To solve this problem, an adaptive blowing control algorithm, which is based on the decomposition method expanding the expert knowledge in depth control and the adaptive method using fuzzy basis function expansion (FBFE), is proposed. To verify the performance of the proposed algorithm, the blowing control of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the UFV blowing control system online.

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

Fuzzy Logic-Based Blowing Controller for Underwater Flight Vehicle (수중 비행체를 위한 퍼지 논리 기반의 부상 제어기)

  • Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.161-162
    • /
    • 2008
  • 침수의 경우에, 수중 비행체(UFV : Underwater Flight Vehicle)는 발라스트 탱크들의 내부를 고압 공기로 비워 내어 부상을 수행한다. 그런데, 기존의 blow-off 방법은 가벼운 침수일지라도 부상 후에는 몸체를 수면에 드러나게 한다. 이는 불필요한 임무 실패 또는 몸체 노출의 결과를 가져온다. 따라서, 부상 제어에 의해 침수 및 부상에 의한 오버슈트 심도를 감소시킴과 동시에 몸체를 수면 근처에 유지시키는 것이 필요하다. 이 문제를 해결하기 위해서 전문가 지식 및 FBFE(Fuzzy Basis Function Expansion)를 사용하는 부상 제어 알고리즘이 제안되었다. 제안된 알고리즘의 성능 검증을 위한 시뮬레이션 결과는 제안된 알고리즘이 UFV 부상 제어 시스템에 존재하는 문제점들을 효과적으로 해결하고 있음을 보여준다.

  • PDF

Study on Dynamics Modeling and Depth Control for a Supercavitating Underwater Vehicle in Transition Phase (초공동 수중운동체의 천이구간 특성을 고려한 동역학 모델링 및 심도제어 연구)

  • Kim, Seon Hong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • A supercavitation is modern technology that can be used to reduce the frictional resistance of the underwater vehicle. In the process of reaching the supercavity condition which cavity envelops whole vehicle body, a vehicle passes through transition phase from fully-wetted to supercaviting operation. During this phase of flight, unsteady hydrodynamic forces and moments are created by partial cavity. In this paper, analytical and numerical investigations into the dynamics of supercavitating vehicle in transition phase are presented. The ventilated cavity model is used to lead rapid supercavity condition, when the cavitation number is relatively high. Immersion depth of fins and body, which is decided by the cavity profile, is calculated to determine hydrodynamical effects on the body. Additionally, the frictional drag reduction associated by the downstream flow is considered. Numerical simulation for depth tracking control is performed to verify modeling quality using PID controller. Depth command is transformed to attitude control using double loop control structure.

Studies on Planing Avoidance Control for a Ventilated Supercavitating Vehicle (분사형 초공동 수중운동체의 Planing 회피에 대한 연구)

  • Park, Jongyeol;Kim, Seonhong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • Supercavitation is a technology that reduces frictional resistance of an underwater vehicle by surrounding it with bubbles. Supercavity is divided into natural supercavity and ventilated supercavity which is formed by artificially supplying gas. Planing forces are present when a section of the underwater vehicle goes outside of the cavitation region in the supercavity condition. Planing often leads to an unstable flight because it acts vertically on the body suddenly. In this paper, a relationship between the ventilation rate and the cavitation number is determined. Based on the relationship, desired cavitation number which can avoid to planing is determined and then ventilation controller is designed. The performance of the ventilation controller is verified with a depth change controller using the cavitator. Simulation results show that the ventilation controller can minimize the planing force and moment.