• 제목/요약/키워드: Underwater control system

검색결과 314건 처리시간 0.032초

라오-블랙웰라이즈드 입자필터를 이용한 지형참조 수중항법 (Terrain-referenced Underwater Navigation using Rao-Blackwellized Particle Filter)

  • 김태윤;김진환;최현택
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.682-687
    • /
    • 2013
  • Navigation is a crucial capability for all types of manned or unmanned vehicles. However, vehicle navigation in underwater environments still remains a challenging problem since GPS signals for position fixes are not available in the water. Terrain-referenced underwater navigation is an alternative navigation technique that utilizes geometric information of the subsea terrain to correct drift errors due to dead-reckoning or inertial navigation. Terrain-referenced navigation requires the description of an undulating terrain surface as a mathematical function or table, which often leads to a highly nonlinear estimation problem. Recently, PFs (Particle Filters), which do not require any restrictive assumptions about the system dynamics and uncertainty distributions, have been widely used for nonlinear filtering applications. However, PF has considerable computational requirements which used to limit its applicability to problems of relatively low state dimensions. This study proposes the use of a Rao-Blackwellized particle filter that is computationally more efficient than the standard PF for terrain-referenced underwater navigation involving a moderate number of states, and its performance is compared with that of the extended Kalman filter algorithm. The validity and feasibility of the proposed algorithm is demonstrated through numerical simulations.

VPMM 시험을 통한 무인 수중 글라이더 모형의 동유체력 계수 추정에 관한 연구 (Experimental Study on Hydrodynamic Coefficients of Autonomous Underwater Glider Using Vertical Planar Motion Mechanism Test)

  • 정진우;정재훈;김인규;이승건
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.119-125
    • /
    • 2014
  • A vertical planar motion mechanism(VPMM) test was used to increase the prediction accuracy for the maneuverability of an underwater glider model. To improve the accuracy of the linear hydrodynamic coefficients, the analysis techniques of a pure heave test and pure pitch test were developed and confirmed. In this study, the added mass and damping coefficient were measured using a VPMM test. The VPMM equipment provided pure heaving and pitching motions to the underwater glider model and acquired the forces and moments using load cells. As a result, the hydrodynamic coefficients of the underwater glider could be acquired after a Fourier analysis of the forces and moments. Finally, a motion control simulation was performed for the glider control system, and the results are presented.

유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험 (Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot)

  • 김희중;전봉환;이지홍
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.

만타형 UUV의 제어기 설계에 관한 연구 (A Study of the Control System on the Manta-type UUV)

  • 김형동;김준영;김시홍;이승건
    • 한국항해항만학회지
    • /
    • 제35권5호
    • /
    • pp.359-363
    • /
    • 2011
  • 본 연구에서는 만타 형상을 가진 무인잠수정(Manta-type unmanned underwater test vehicle)의 제어 성능 평가를 수행 하였다. 제어 방법으로서 PID제어, Fuzzy 제어가 적용되었으며, 6자유도 운동 수학모델과 Matlab Simulink을 이용하여 조종 운동 시뮬레이션을 수행하였다. 또한, 설계된 제어기로 수심제어 및 방위제어에 적용하여, 조류의 외란 하에서 제어 성능을 평가하였다.

소나 센서를 이용한 소형 ROV의 위치제어시스템에 관한 연구 (A Study On the Position Control System of the Small ROV Using Sonar Sensors)

  • 최동현;임근남;김상현
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.579-589
    • /
    • 2008
  • In the past few years, there are many studies and researches of the underwater vehicles which are carried out its mission using sonar sensors. MSCL(Marine System Control Lab.) at Inha University developed test-bed small ROV, ISRO. ISRO is an open-frame type and has 4 thrusters. ISRO can control 4 motions i.e surge, sway, yaw and heave with sonar sensors. ISRO is developed for inspection of ship hull, marine structure, plant of lake or river and so on. When ROV ISRO inspects something, it is necessary to control the position of ROV ISRO's for the movement and anti-collision with structures in the underwater. In this paper, we deal with the development of a small ROV and verification of the position control system via simulation and experiment using sonar sensors.

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식 (Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment)

  • 김동훈;이동화;명현;최현택
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

적응성을 가진 강인한 비선형 예측제어기 설계 (Design of an Adaptive Robust Nonlinear Predictive Controller)

  • 박기용;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

추진기의 영향을 고려한 무인잠수정의 적응학습제어 (An Adaptive Learning Controller for Underwater Vehicle with Thruster Dynamics)

  • 이원창
    • 수산해양기술연구
    • /
    • 제33권4호
    • /
    • pp.290-297
    • /
    • 1997
  • Underwater robotic vehicles(URVs) are used for various work assignments such as pipe-lining, inspection, data collection, drill support, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc. As the use of such vehicles increases the development of vehicles having greater autonomy becomes highly desirable. The vehicle control system is one of the most critic vehicle subsystems to increase autonomy of the vehicle. The vehicle dynamics is nonlinear and time-varying. Hydrodynamic coefficients are often difficult to accurately estimate. It was also observed by experiments that the effect of electrically powered thruster dynamics on the vehicle become significant at low speed or stationkeeping. The conventional linear controller with fixed gains based on the simplified vehicle dynamics, such as PID, may not be able to handle these properties and result in poor performance. Therefore, it is desirable to have a control system with the capability of learning and adapting to the changes in the vehicle dynamics and operating parameters and providing desired performance. This paper presents an adaptive and learning control system which estimates a new set of parameters defined as combinations of unknown bounded constants of system parameter matrices, rather than system parameters. The control system is described with the proof of stability and the effect of unmodeled thruster dynamics on a single thruster vehicle system is also investigated.

  • PDF

수중 비행체의 자율제어를 위한 적응 부상 제어 알고리즘 (Adaptive Blowing Control Algorithm for Autonomous Control of Underwater Flight Vehicle)

  • 김현식
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.482-487
    • /
    • 2008
  • 침수의 경우에, 수중 비행체(UFV : Underwater Flight Vehicle)는 발라스트 탱크들의 내부를 고압 공기로 비워 내어 부상을 수행한다. 동시에, 침수와 부상 순차에 의한 오버슈트 심도를 감소시키기 위해서 제어판과 추진기를 병행하여 사용한다. 그런데, 기존의 전체 고압 공기 blow-off 방법은 가벼운 침수일지라도 부상 후에는 몸체를 수면에 드러나게 한다. 이는 불필요한 임무 실패 또는 몸체 노출의 결과를 가져온다. 따라서, 부상 제어에 의해 오버슈트 심도를 감소시킴과 동시에 몸체를 수면 근처에 유지시키는 것이 필요하다. 이 문제를 해결하기 위해서 심도 제어에 있어서의 전문가 지식을 확장하는 분해법 및 FBFE(Fuzzy Basis Function Expansion)을 사용하는 적응법에 기초한 적응 부상 제어 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해 UFV 부상 제어가 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 UFV 부상제어 시스템에 존재하는 문제점들을 온라인으로 효과적으로 해결하고 있음을 보여준다.