• Title/Summary/Keyword: Underwater control system

Search Result 314, Processing Time 0.064 seconds

A Study on Underwater Visible Light Communication using ASK Modulation (ASK 변조를 이용한 수중 가시광 통신에 관한 연구)

  • Son, Jin-Hwan;Kim, Seong-Min;Sung, Kyu-Youl;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.579-582
    • /
    • 2016
  • Recently, wireless communication system has been widely used in a variety of fields along with the remarkable advancement of communication technology. Sound communication system in underwater wireless communication is utilized in underwater communication since it has better transmission capacity than the existing RF. However, sound communication system has the problems such as low speed communication, transmission delay and limited bandwidth, and the studies have been actively conducted on the visible light communication underwater to improve these problems. Therefore, the visible light communication underwater using ASK modulation is suggested for the effective communication in this article.

  • PDF

The Effectiveness of MOOS-IvP based Design of Control System for Unmanned Underwater Vehicles (MOOS-IvP를 이용한 무인잠수정 제어기 개발의 효용성)

  • Kim, Jiyeon;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.157-163
    • /
    • 2014
  • This paper demonstrates the benefit of using MOOS-IvP in the development of control system for Unmanned Underwater Vehicles(UUV). The demand for autonomy in UUVs has significantly increased due to the complexity in missions to be performed. Furthermore, the increased number of sensors and actuators that are interconnected through a network has introduced a need for a middleware platform for UUVs. In this context, MOOS-IvP, which is an open source software architecture, has been developed by several researchers from MIT, Oxford University, and NUWC. The MOOS software is a communication middleware based on the publish-subscribe architecture allowing each application to communicate through a MOOS database. The IvP Helm, which is one of the MOOS modules, publishes vehicle commands using multi-objective optimization in order to implement autonomous decision making. This paper explores the benefit of MOOS-IvP in the development of control software for UUVs by using a case study with an auto depth control system based on self-organizing fuzzy logic control. The simulation results show that the design and verification of UUV control software based on MOOS-IvP can be carried out quickly and efficiently thanks to the reuse of source codes, modular-based architecture, and the high level of scalability.

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

A Study on the Fuzzy-PID Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 퍼지-PID 심도 제어에 관한 연구)

  • 김현식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2000
  • In Underwater Flight Vehicle depth control system, the followings must be required. Firstly, It need robust depth control performance which can get over parameter variation, modeling error and disturbance. Secondly, It need no oveshoot phenomenon to avoid colliding with ground surface and obstables. Thirdly, It need continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, It need effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose the Fuzzy-PID depth controller with the control parameter interpolators. Simulation results show the proposed control scheme has robust and accurate performance with continuous control input.

  • PDF

Study on Model Based Control for the Roll Motion of an Underwater Robot (수중로봇의 롤 운동제어를 위한 모델 베이스 제어에 관한연구)

  • Kim, Chi-Hyo;Park, Woo-Kun;Kim, Tae-Sung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.323-330
    • /
    • 2009
  • We have been developing an underwater robot for harbour construction using a parallel mechanism The robot is attached to the rope of a crane, which curries a large stone into the undersea The robot's yaw and pitch are controlled by hydraulic cylinders but its roll is uncontrollable. We mount propellers in both side of the robot to generate the roll motion This paper studies on the control for the roll motion of a underwater robot. A gyro-sensor is used to measure the angle in a roll motion We develop the dynamic model to describe the robot's roll motion by a second order non-linear system and identify the model parameters by recursive least square and adaptive identifier. PD control, recursive model based control and adaptive model based control are applied with the dynamic model which computes the control input to compensate disturbances. This paper introduces the underwater robot system and presents the simulated and experimental results of the proposed controller.

A Study on Development of Technology System for Deep-Sea Unmanned Underwater Robot of S. Korea analysed by the Application of Scenario Planning (한국형 수중로봇시스템의 기술개발연구 - 시나리오플래닝 적용으로 -)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.27-40
    • /
    • 2013
  • This study is about development of technology system for an advanced deep-sea unmanned underwater robot of S. Korea analysed by the application of scenario planning. It was developed a 6000m class next-generation deep-sea unmanned underwater vehicle(or robot, UUV) system, soonly ROV 'Hemire' and Depressor 'Henuvy' in 2006 at S. Korea and motion control, adaptive control algolithm, a work-space manipulator control algolithm, especially the underwater inertial-acoustic navigation system robust to initial errors and sensor failures. But there are remained matters on position tracking of the USBL, inertial-acoustic navigation system, attitude sensor, designed sonar sensors. So this study suggest the new idea for settle the matters and then this idea help the development of the underwater inertial-acoustic navigation system robust to initial errors and sensor failures, such as acoustic signal drop-out, by modifying the error covariance of the failed sonar signal when drop-out occurs. As a result, the future policy for deep-sea unmanned underwater robot of S. Korea is to further spur the development of new technology and more improvement of the technology level for deep-sea unmanned underwater robot system with indicator and imaginary wall as external device.

Numerical Prediction of Underwater Propeller Noise (블레이드 형상변화에 따른 수중 추진기 방사 소음 예측에 관한 연구)

  • Seol, Han-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.344-347
    • /
    • 2006
  • Noise reduction and control is an important problem in the performance of underwater acoustic system and on the habitability of the passenger ship for crew and passenger. Furthermore, sound generated by a propeller is critical in underwater detection and is often related to the survivability of the vessel especially for military purpose. Generally propeller noise is often the dominant noise source of marine vehicle. The flow field is analyzed with potential-based panel method, and then the time dependent pressure and sheet cavity volume data are used as the input for Ffowcs Williams-Hawkings formulation to predict the far-field acoustics. Through this study, the dominant noise source of underwater propeller is analyzed, which will provide a basis for proper noise control strategies.

  • PDF

The State Estimation by Unknown Disturbance Observer of Underwater Vehicle System for Robust Control (강인한 제어를 위한 수중이동시스템의 상태추정에 대한 연구)

  • Lee, Jin-Woo;Kim, Hwan-Seong;An, Young-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • In this paper, and estimation method for estimating the states of underwater vehicle systems with external unknown disturbance is proposed. First, the dynamics of underwater vehicle are induced by Taylor series expansion in the vertical plane and horizontal plane, respectively. For constructing the system model, the external efforts, i.e., the sea surface disturbances, the current, wave and etc., are regarded as external unknown disturbances. Thus the disturbance is added as external input into state-space form of underwater vehicle system. To estimate the state of systems with unknown disturbance, a disturbance observer which does not effected the external unknown input is proposed, and the existence condition for the observer is given. Finally, the effectiveness of the proposed disturbance observer for robust control of underwater vehicle systems is verified by using numerical simulation.

The design of attitude reference system for underwater vehicle using extended kalman filter (확장칼만필터를 이용한 수중 운동체의 자세계산 시스템 설계)

  • 홍현수;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1352-1355
    • /
    • 1997
  • This paper presents the algorithm for estimating the attitude of an underwater vehicle using EFK. The system model is designed by linerizing the nonlinear Euler angle differential equation and the measurements is a speed logger output. The simulation result shows that the estimation lagorithm is adequate for decreasing attitude errors that grow abruptly during the motion with acceleration and rotation. It also shows that we can adapt the algorithm for compensating initial attitude errors generated after initial leveling.

  • PDF

Controller Design for an Autonomous Underwater Vehicle Using Estimated Hydrodynamic Coefficients

  • Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.7-17
    • /
    • 2006
  • Depth and heading control of an AUV are considered to follow the predetermined depth and heading angle. The proposed control algorithm is designed. based on a sliding mode control using estimated hydrodynamic coefficients. The hydrodynamic coefficients are estimated with conventional nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. By using the estimated coefficients, a sliding mode controller is constructed for the combined diving and steering maneuver. The simulation results of the proposed control system are compared with those of control system with true coefficients. This paper demonstrates the proposed control system, discusses the mechanisms that make the system stable and follows the desired depth and heading angle, accurately, in the presence of parameter uncertainty.