• Title/Summary/Keyword: Underwater Wireless Sensor Network

Search Result 32, Processing Time 0.024 seconds

Energy Efficient Data Transmission Algorithms in 2D and 3D Underwater Wireless Sensor Networks (2차원 및 3차원 수중 센서 네트워크에서 에너지 효율적인 데이터전송 알고리즘)

  • Kim, Sung-Un;Park, Seon-Yeong;Cheon, Hyun-Soo;Kim, Kun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1657-1666
    • /
    • 2010
  • Underwater wireless sensor networks (UWSN) need stable efficient data transmission methods because of environmental characteristics such as limited energy resource, limited communication bandwidth, variable propagation delay and so on. In this paper, we explain an enhanced hybrid transmission method that uses a hexagon tessellation with an ideal cell size in a two-dimensional underwater wireless sensor network model (2D) that consists of fixed position sensors on the bottom of the ocean. We also propose an energy efficient sensing and communication coverage method for effective data transmission in a three-dimensional underwater wireless sensor network model (3D) that equips anchored sensors on the bottom of the ocean. Our simulation results show that proposed methods are more energy efficient than the existing methods for each model.

ToA Based Sensor Localization Algorithm in Underwater Wireless Sensor Networks (ToA 기법을 이용한 수중 무선 센서 네트워크에서의 센서 위치 측정)

  • Lee, Kang-Hoon;Yu, Chang-Ho;Choi, Jae-Weon;Seo, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.641-648
    • /
    • 2009
  • Currently several kinds of sensor localization methods have been developed for terrestrial wireless sensor networks. This study, in order to extend the field to underwater environments, a localization technique is studied for UWSNs (Underwater Wireless Sensor Networks). In underwater environments, RF (Radio Frequency) signal is not suitable for underwater usage because of extremely limited propagation. Because of that reason UWSNs should be constituted with acoustic modems. But, to realize underwater application, we can borrow many design principles from ongoing research for terrestrial environments. So, in this paper we introduce the modified localization algorithm using ToA method which is based on the terrestrial research. First of all, we study the localization techniques for terrestrial environments where we investigate possible methods to underwater environment. And then the appropriate algorithm is presented in the underwater usage. Finally the proposed underwater based localization algorithm is evaluated by using computer.

Infrastructure-based Localization System using Underwater Wireless Sensor Network (구조화된 공간에서의 수중 무선 센서 네트워크를 이용한 위치 추정 시스템)

  • Park, Dae-Gil;Kwak, Kyung-Min;Chung, Wan-Kyun;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.699-705
    • /
    • 2012
  • In this paper, an infrastructure-based localization method using underwater wireless sensor network (UWSN) is addressed. A localization using the UWSN is necessary to widen the usage of underwater applications, however it is very difficult to establish the UWSN due to the restrictions of water. In this paper, to extend the usage of UWSN at the infrastructure, we propose a sophisticated UWSN localization method using the Received Signal Strength Indicator (RSSI) of the electromagnetic waves. During the electromagnetic waves propagating in underwater, there arises a lot of attenuation according to the distance, while the attenuation shows uniformity according to the distance. Using this characteristics, the localization system in underwater infrastructure is proposed and the experimental results show the effectiveness.

Differentiated Packet Transmission Methods for Underwater Sensor Communication Using SON Technique (SON (Self Organizing Network) 기술을 이용한 해양 수중 센서 간 통신에 있어서 데이터 중요도에 따른 패킷 차별화 전송 기법)

  • Park, Kyung-Min;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.399-404
    • /
    • 2011
  • For the underwater wireless sensor networks, we propose the packet transmission method which distinguishes more important packet than others. Because the ocean underwater transmission environments are extremely unstable, we use SON(Self Organizing Network) techniques to adapt to the constantly varying underwater acoustic communication channels and randomly deployed sensor nodes. Especially we suppose two kinds of packets which have different priorities, and through the simulations we show that high priority packets arrive at the source node faster than lower priority packets with a proposed scheme.

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

Efficient Data Transmission Scheme for Underwater Wireless Sensor Networks (수중 센서 네트워크를 위한 효율적인 데이터 전송 기법)

  • Park, Hyun-Hoon;Park, Jin-Ho;Lee, Jong-Geun;Kim, Sung-Un
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.43-44
    • /
    • 2007
  • The Underwater Wireless Sensor Network (UWSN) consists of sensor nodes equipped with a small battery of limited energy resource. Hence, the energy efficiency is a key design issue that needs to be addressed in order to improve the lifetime of the network. In this paper, we use a hexagon tessellation with and ideal cell size to deploy the underwater sensor nodes for the UWSN and propose an enhanced hybrid transmission method that considers the load balancing once the data transmission occurs.

  • PDF

Dual Super Cluster Head Underwater Sensor Network Routing Protocol (듀얼 슈퍼 클러스터 헤드 해양 센서 네트워크 라우팅 프로토콜)

  • Chang, Young-Il;Shin, Soo-Young;Prak, Hyun-Mun;Park, Soo-Huyn
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.87-96
    • /
    • 2006
  • Wireless Sensor Network (WSN) is researched in various filed. Underwater Sensor Network (UWSN) is used various purpose such as underwater environment monitoring. But, WSN is researched in the terrestrial that uses mainly radio frequency, The existing terrestrial research is incongruent to apply to underwater. Therefore, we propose UWSN architecture that considers underwater environment. In this paper, UWSN applied cluster technique and functional node constructs. Each cluster collects and sends cluster data. Dual super cluster head receives cluster data and transmits each in the base-station. We implement WSN routing algorithm, and construct test-bed and analyze cluster data receive rate.

  • PDF

MAC Protocol using Dynamic Slot-Time for Underwater Acoustic Sensor Network (수중 센서 네트워크를 위한 가변 슬롯시간 기반의 MAC프로토콜)

  • Lee, Dong-Won;Kim, Sun-Myeng;Yang, Youn-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.344-347
    • /
    • 2011
  • Unlike a terrestrial wireless sensor network which uses radio waves, UWASN(Underwater Acoustic Sensor Network) relies on acoustic waves. There are lots of ongoing researches for long latency and limited bandwidth of underwater sensor network by using acoustic wave. Packets transferred by node often colide in underwater sensor network due to long latency. To solve this kind of problem, in general, Back-off scheme which is used in wireless network is used. However, fixed Slot-time according to node allocation generates useless time delay, and this lowers network performance. In this thesis, active setting technique of Slot-time is proposed, and applied for already studied MAC protocol. At the conclusion, it was proved that the MAC protocol using the proposed scheme has better performance than existing MAC protocol as a result comparison.

  • PDF

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

A Study on Dynamic Timeout Over Multiple Access with Collision Avoidance (충돌회피 다중접속을 위한 동적 타임아웃 연구)

  • Khoa, Tran Thi Minh;Oh, Seung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.97-100
    • /
    • 2011
  • Underwater Wireless Acoustic Sensor Networks have become an important area of research over the recent decades. Designing an underwater network, especially a media access control (MAC) protocol, faces many challenges due to the peculiarities of underwater environment. One of the most important problems is resulted from long and variable propagation delay of the acoustic wave. In this paper, we propose a new method, namely Dynamic Timeout over Multiple Access with Collision Avoidance (DT/MACA), which is designed to handle long and high variable propagation delay in underwater acoustic sensor networks. In this proposed method, the difference timeout intervals are evaluated and applied to each network transmission. Simulation results show that our work not only improves the network throughput, but also decreases the unnecessary retransmission and end-to-end delay.