• Title/Summary/Keyword: Underwater Structure

Search Result 365, Processing Time 0.025 seconds

An Experimental Study on the Characteristics of Antiwashout Underwater Concrete Using Sea Sand (해사를 사용한 수중불분리콘크리트의 특성에 관한 실험적 연구)

  • 김명식;백동일;어영선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.76-82
    • /
    • 1997
  • Recently as the development of a large-scale ocean structure or ocean is in progress, the importance of underwater concrete construction came to the fore. However, a problem with this underwater concrete construction is the segregation of cement and aggregate occurs when concrete is poured into the underwater. However, recently as an adhesiveness of the constituents of fresh concrete is increased even in our country, antiwashout concrete admixture were developed. The antiwashout concrete admixture can reduce the segregation significantly. Although this antiwashout underwater concrete is superior to the traditional underwater concrete in terms of durability, watertightness, stability, etc. But it is still unsatisfied due to the lack of criterion or construction experiences. Furthermore, because of an insufficiency of natural aggregate, the development of replacing aggregate came to be necessary. Accordingly, the purpose of this study is to investigate the feasibility of sea sand as a replacing aggregate and the characteristic change of antiwashout underwater concrete using river sand, sea sand, and blended sand (river sand:sea sand=3:7) through experimental researches.

  • PDF

Digital Image Processing of Side Scan Sonar for Underwater Man-made Structure (수중 인공구조물에 대한 사이드스캔소나 탐사자료의 영상처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Kim, Kwang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.344-354
    • /
    • 2009
  • Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.

Shock response analysis to underwater explosion using Hydrocode (Hydrocode를 이용한 수중폭발 충격응답 해석)

  • Lee, Sang-Gab;Park, Chung-Kyu;Kweon, Jung-Il;Jeong, Sung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1174-1179
    • /
    • 2000
  • In recent years, the structural shock response to underwater explosion has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. For the simulation of underwater explosions against, surface ships or submerged structures one has to include the effects of the explosive shock wave, the motion of the gaseous reactive products, the local cavitation collapse, the different nonlinear structural properties and the complex fluid-structure interaction phenomena. In this study, as benchmark step for the validation of hydrocode LS/DYNA3D and of technology of fluid-structure interaction problems, two kinds of cavitation problems are analyzed and structural shock response of floating ship model are compared with experimental result.

  • PDF

Underwater Structure-Borne Noise Analysis Using Finite Element/Boundary Element Coupled Approach (유한요소/경계요소 연성해석을 통한 수중 구조기인소음 해석)

  • Lee, Doo-Ho;Kim, Hyun-Sil;Kim, Bong-Ki;Lee, Seong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.789-796
    • /
    • 2012
  • Radiated noise analysis from a ship structure is a challenging topic owing to difficulties in the accurate calculation of the fluid-structure interaction as well as owing to a massive degree of freedom of the problem. To reduce the severity of the problem, a new fluid-structure interaction formulation is proposed in this paper. The complex frequency-dependent added mass and damping matrices are calculated using the high-order Burton-Miller boundary integral equation formulation to obtain accurate values over all frequency bands. The calculated fluid-structure interaction effects are added to the structural matrices calculated by commercial finite element software, MSC/NASTRAN. Then, the impedance and underwater radiation noise due to an excitation of structure are calculated. The present formulation is applied to a ship to calculate the underwater radiated noise.

Shallow Crustal Structure of the Bransfield Basin Using an Autonomous Underwater Hydrophone

  • Kim, Kee-Hoon;Park, Min-Kyu;Hong, Jong-Kuk;Lee, Joo-Han
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.351-359
    • /
    • 2006
  • We investigated subsurface structures of the Bransfield Basin, the Antarctic with AUH (Autonomous Underwater Hydrophne) which was designed to record abyssal T-waves generated from submarine earthquakes. The data obtained from a multi-channel seismic survey and an AUH were used for this study. A seismic reflection method was applied to the multi-channel seismic survey data in order to identify bathymetry and sedimentary structures, and the signals recorded in the AUH were used to obtain deep structures as we applied a seismic refraction method. Even though we couldn’t investigate deeper and detailed structure in study area because of lack of Airgun’s capacity, the AUH showed possibilities for being used for a marine seismic survey. From this experiment, we decided the upper and lower sediment layer velocities, detected irregular basement topography probably caused by submarine volcanic/magmatic activities, and retrieved the velocity of the basement and the depth of the sediment layer/basement boundary.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

Optimum Mix Proportions of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure (수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 적정 배합비 도출)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Lee, Sang-Woo;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.43-50
    • /
    • 2007
  • The purpose of this study was to determine the optimum mix proportion of latex modified mortar for agricultural underwater concrete structures repair. The experimental variables included a latex and antiwashout admixture amount, binder-sand ratio, water-binder ratio. This study were evaluated a repair performance and environment effect of latex modified repair mortar for agricultural underwater concrete structures. The pH test was conducted to evaluated the environmental effect and the flow test was peformed to evaluated the workability. Also, compressive, flexural and bond tests were conducted. Test results show that the optimum mix proportion of latex modified repair mortar for agricultural underwater concrete structures, was achieved by 1:1.5 binder-sand ratio, 5% latex ratio (weight of binder), 1.3% antiwashout admixture ratio (weight of binder), 0.33 water-binder ratio and 10% silica lune replacement ratio (weight of cement). The environmental effect and repair performance of optimum mix proportion satisfied all target performance.

A Study on the Excavation Method Near Fish Farms and Livestock (양만장 및 가축사육시설 인접지역 암굴착공법 검토에 관한 연구)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Construction vibration such as explosive blast, hydraulic breaker, vibratory roller, pile driving noise and so on, injuries in areas around the construction sites. In particular, underwater sound caused by ground vibration is propagation such as structure borne noise. Vibration and underwater sound due to construction activities may cause injury to river, sea or land fish farms near construction sites. The purpose of present study is to measure the sound pressure level and frequency analysis of the underwater noise generated by ground vibration(Blasting, hydraulic crawler drill, hydraulic breaker, vibratory roller). Underwater noise were monitoring by a hydrophone (TC 4013) and recorded, analysis were made using a by software (Prosig).