• Title/Summary/Keyword: Underwater Nozzle

Search Result 17, Processing Time 0.026 seconds

FLOWING OF THE SYSTEM THE UNDERWATER VEHICLES HULL THE NOZZLE OF PUMP-JET PROPELLER WITH AMOLES OF ATTACK

  • Lee, Kwi-Joo;Nikushchenko, Dmitry V.;Park, Weon-Me
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.275-280
    • /
    • 2002
  • Results of a numerical simulation of a flowing of the underwater vehicles hull with the pump-jet nozzle are presented. It was calculate velocity distributions and coefficients of the lift force and the longitudinal moment of the hull with the pump-jet nozzle and isolated hull for some values of angle of attack. It was shown that the area of tile influence of the nozzle on the velocities distribution of the hull and character of changing of coefficients of the lift force and the longitudinal moment and their derivatives depending on angle of attack.

  • PDF

Investigation on Shapes and Acoustic Characteristics of Air Bubbles Generated by an Underwater Nozzle (수중 노즐에서 발생하는 기포의 형상 및 음향 특성 연구)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.190-197
    • /
    • 2006
  • It is well known that the acoustic characteristics of the sea are significantly affected by bubbles which have their own inherent characteristics at the undersea. In this study, the shape and acoustic characteristics of air bubbles generated by an underwater nozzle are calculated numerically, and are measured with a high speed camera and a hydrophone at various air flow rates in the experimental apparatus. As a result of analysis, the shape calculated numerically well matched with measured values at low flow rates, but in case of relatively higher flow rates. the use of correction coefficient is needed for more accurate estimation of the bubble shape. And also the rising velocity of a single bubble is constant regardless of both the bubble size and the flow rate. and the acoustic signal generated when the bubble is produced by an underwater nozzle has the same characteristic of natural frequency of the bubble pulsation, and is agreed with Minnaert's equation if the correction coefficient is considered in accordance with the flow rate.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Flowing of the System the Underwater Vehicles Hull the Nozzle of Pump-jet Propeller with Angles of Attack (잠수선형의 영각 펌프노즐 프로펠러 유동 시스템에 관한 연구)

  • Lee, Kwi-Joo;Joa, Son-Won;Kim, Kyoung-Hwa
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • Results of a numerical simulation of a flowing of the underwater vehicles hull with the pump-jet nozzle are presented. It was calculate velocity distributions coefficients of the lift force the longitudinal moment of the hull with the pump-jet nozzle and isolated hull for some values of angle of attack. It was shown that the area of the influence of the nozzle on the velocities distribution of the hull and character of changing of coefficients of the lift force and the longitudinal moment and their derivatives depending on angle of attack.

The Basic Study on the Site Application of the Underwater-Hardening Epoxy Mortar Using RCSS (급냉 제강 슬래그를 이용한 에폭시 수지 모르타르 현장 적용에 관한 기초적 연구)

  • Kawg Eun-Gu;Kang Gee-Woong;Bae Dae-Kyung;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.405-408
    • /
    • 2005
  • The repair and reinforcement materials of the concrete structure in underwater is use to epoxy mortar for underwater-harding. Because it ensures the separation of material and a fluidity in construction, it is important to epoxy mortar This study dealt with the influence of the using of rapidly-chilled steel slag on flow, nozzle passing time, viscosity, and strength of mortar by experimental design. As results of study, this paper proved that the more the using rate of rapidly chilled steel slag increased, the more this affected the enhancement of flow, the decrease of O-lot, and the development of compressive strength, flexural strength. Also, considering the fluidity, nozzle passing time and strength of mortar, it is desirable to use RCSS300 of rapidly chilled slag.

  • PDF

An Experimental Investigation of the Underwater Oil Drop Formation (수중으로 방출되는 유류의 유적화에 관한 실험연구)

  • Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • Oil drop formation during the underwater oil discharge is investigated experimentally. The focus is placed on the size of the drops formed with the variation of discharge speed and nozzle diameter. As the Reynolds number based on the nozzle diameter increases, the droplet size decreases first and then increases until an explosive atomization occurs. The length of the jet attached to the nozzle Increases with the Reynolds number and then decreases. The transition occurs when the flow becomes asymmetry.

  • PDF

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

A Study of Hybrid Rocket for Underwater Operation (수중 운용을 위한 하이브리드 로켓 연구)

  • Woo, KyoungJin;Min, Moonki;Lee, Junghyun;Chu, Bokyoung;Lee, Seunghwan;Kim, Gyeongmin;Kim, Heuijoo;Kim, Jiman;Hwang, Heuiseong;Yoo, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.144-147
    • /
    • 2017
  • A hybrid rocket engine capable of thrust throttling and underwater-working was developed for the underwater high-speed vehicle propulsion system. The hybrid rocket engine was designed and made by two types of ground test motor and underwater working motors. An engine performance was verified by the ground tests with the ground test motor and in the case of underwater motors the ground tests and underwater tests were performed. For the underwater operation a two-stage ignition system was adopted and a rupture disc was installed at the end of nozzle for a water-tight just before an ignition. Successful ignition and propulsion were confirmed in the underwater test with the final selected double rupture disc.

  • PDF

Fundamental Experiment of Underwater Ram-jet by PIV Measurement (PIV에 의한 수중램제트의 기초실험)

  • 김춘식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.165-170
    • /
    • 2000
  • A fundamental experimental study for a substitute proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. for basic study of effect of ram-jet propulsion performances ismple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake mixing chamber and nozzle. Some flow dynamics relating to the high-speed ejector effect were discussed for the basic understanding for the ram-jet propulsion principle.

  • PDF

A Study on Fundamental Characteristics of Underwater Ram-Jet Propulsion by PIV (PIV에 의한 수중램제트추진의 기본특성에 관한 연구)

  • 양창조;김춘식;최민선;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.36-42
    • /
    • 2000
  • A fundamental experimental study for an alternative proposal to super-speed craft propulsion system called underwater ram-jet propulsion by high pressure air ejection as driving force was investigated. For basic study of the effects of ram-jet propulsion performance, a simple underwater ram-jet flow field was established and PIV(Particle Image Velocimetry) method was adopted to analyse the jet-induced flow appearing at ram intake, mixing chamber and nozzle. Some flow dynamics relating to the high-speed ram-jet effect were discussed for the basic understanding of the its propulsion principle.

  • PDF