Purpose: This study uses the protection motivation theory and information processing theory to discuss the high number of fraud phenomenon in Indonesia which causes worries to the internet users. The second problem is the large amount of information transparency in e-commerce which actually hinders the users in making decisions so it causes a negative behavior pattern, namely discontinue usage intention. Design/methodology: Therefore, this research hopes to provide insight to the online or e-commerce business community, especially for Tokopedia, to develop its business from understanding the factors influencing consumer attitude when shopping online. The sample are students from Universitas Indonesia, Institut Teknologi Bandung, Institut Pertanian Bogor, Universitas Gadjah Mada and Institut Teknologi Surabaya, with total 900 respondents. Result: The results of this research indicate that ubiquitous connectivity (UC) variable significantly affects variables such as the privacy concern (PC), information transparency (IT) and information overload (IO). PC and IO variables also significantly affect Discontinue Usage Intention (DUI). Conclusion: This study gives a new perspective that despite the phenomenon, the millennial generation especially are not entirely concerned about the privacy concern, however, this study clearly shows that the privacy issue in the digital word continues to be something that needs to be cared for.
이 논의는 자연언어처리의 발전과정을 보이면서 그것이 정보 및 인지문제와 어떻게 밀접히 관련되는지를 알아본다.언어사용자인 인간을 저장된 지식-즉 문법과 사전 및 세상에 관한 백과 사전적 사실의 정보를 표상하는 구조-을 이용해 프로그램에 따라 주어진 언어구조를 처리하는 처리자로 보는 계산 모형에 입각해 SHRDLU 등의 자연언어이해 프로그램이 발전하게 되나,화행과 관련된 믿음,취지,목표,의도 및 맥락의존적인 화용론적 요인들의 처리가 아직은 풀어나가야 할 숙제 다.언어,정보 및 인지는 상호 밀접히 관현되면서 그 연구가 과학 발전에 기초가 됨을 보이고자 한다.
Federated Learning (FL) is a technique that excels in training a global model using numerous clients while only sharing the parameters of their local models, which were trained on their private training datasets. As a result, clients can obtain a high-performing deep learning (DL) model without having to disclose their private data. This setup is based on the understanding that all clients share the common goal of developing a global model with high accuracy. However, recent studies indicate that the security of gradient sharing may not be as reliable as previously thought. This paper introduces the latest research on various attacks that threaten the privacy of federated learning.
An understanding of quality attributes is relevant for the software organization to deliver high software reliability. An empirical assessment of metrics to predict the quality attributes is essential in order to gain insight about the quality of software in the early phases of software development and to ensure corrective actions. In this paper, we predict a model to estimate fault proneness using Object Oriented CK metrics and QMOOD metrics. We apply one statistical method and six machine learning methods to predict the models. The proposed models are validated using dataset collected from Open Source software. The results are analyzed using Area Under the Curve (AUC) obtained from Receiver Operating Characteristics (ROC) analysis. The results show that the model predicted using the random forest and bagging methods outperformed all the other models. Hence, based on these results it is reasonable to claim that quality models have a significant relevance with Object Oriented metrics and that machine learning methods have a comparable performance with statistical methods.
Rust has gained popularity as a memory safe systems programming language. At the center of its memory safety is a strict memory ownership model with stringent rules enforced by the compiler. This paper aims to shed light on this memory safety model and the role smart pointers play towards its success. We study specific smart pointers, their purposes and contribution to Rust's memory safety. We further explore weaknesses of these smart pointers and their APIs, and provide scenarios under which they may lead to memory vulnerabilities in Rust programs.
이 논문은 액션 의미표기법을 사용하여 객체와 그에 관련된 연산들의 의미를 정형적으로 정의한다. 액션 의미표기법은 다른 표기법에 비해서 객체연산의 계산과정을 더 명확히 표현할 수 있을 뿐만 아니라, 구현 방식에 대한 힌트도 얻을 수 있다는 장점이 있다. 이를 보여주기 위해서 Aba야-Cardelli의 시그마 계산표기법에 대한 액션 의미구조를 정의하고, 예제 프로그램을 가지고 그 의미를 전개해 본다.
재난상황이 발생했을 때 피해를 줄이고 신속한 인명구조를 위해서 골든타임을 지키는 것이 중요하다. 그러나 현장까지의 이동이나 현장에서의 진입 경로 확보에 어려움을 겪어 골든타임을 지키지 못해 재난사고의 피해가 커지는 일이 발생하는 경우가 있다. 소방대원들이 현장에 도착하기 전 재난현장에 대한 사전 파악이 이루어지기 힘들기 때문이다. 이러한 문제를 해결하기 위해 재난용 드론을 사용하여 현장에 소방대원들이 도착하기 전 사전에 재난상황을 확인하여 골든타임을 확보할 수 있다. 본 논문에서 제안하는 신속한 재난현장 상황 파악을 위한 오픈소스 기반의 사물 인식이 가능한 드론 시스템은 지상제어시스템을 통해 드론의 제어와 실시간 영상 확인 및 사물 인식이 가능하다. 또한 재난사고 현장은 통신환경이 제대로 동작하지 않을 가능성이 있기 때문에 이를 고려하여 설계되었다. 제안하는 시스템은 오픈소스 기반 적은 비용으로 효과적인 현장 파악이 가능하다.
In this paper, we developed a medical computer application for both disable children and adults in order to provide the chance to communicate easily with others. Although there are many mobile healthcare apps available nowadays, we believe that users should also have many options for choosing different types of healthcare programs developed for computers. That's why we have developed ConWis. This application helps a person with hearing loss, voice, speech, or language disorder to communicate easily with others. Through this software, hearing and understanding what is being said more clearly or to express thoughts become easier. To use this software, patient should input a sentence and it will be converted to audio speech using built-in voices for man or woman. In addition to that, it can convert voice that is received by microphone into text and display it on the screen.
본 논문은 공학계열 학생들이 어셈블리 프로그래밍을 통해 x86 프로세서를 학습하는 교육 과정을 소개한다. 이 교육 과정은 어셈블리 프로그래밍을 통해 가상머신에서 프로그램을 실행시켜 학생들이 전공 교과 과정에서 학습한 마이크로프로세서 이론의 이해를 향상시키도록 도와준다. 작성된 어셈블리 파일은 NASM 을 이용하여 컴파일 되고, VMware 의 Workstation Player 가 컴파일러에 의해 생성된 바이너리 파일을 실행시키기 위해 사용되었다. 교육 과정은 마이크로프로세서 이론 수업에 맞추어 과제가 학생에게 주어지고, 학생들은 이론 수업의 이해를 바탕으로 결과물을 완성하고 이를 직접 시연하여 평가받았다.
최근 암호화폐가 발전함에 따라 다양한 연구들이 진행되고 있지만 그 중에서도 암호화폐의 가격 예측 연구들이 활발히 진행되고 있다. 특히 이러한 예측 분야에서도 인공지능 기술을 접목시켜 암호화폐 가격의 예측 정확도를 높이려는 노력들이 지속되고 있다. 인공지능 기반의 기법들 중 시간적 정보를 가진 데이터를 기반으로 하고 있는 LSTM(Long Short-Term Memory) 모델이 다각도로 활용되고 있으나 급등락하는 암호화폐 가격 데이터가 많을 경우에는 그 성능이 상대적으로 낮아질 수 밖에 없다. 따라서 본 논문에서는 가격이 급등락하고 있는 Bitcoin, Ethereum, Dash 암호화폐 데이터 환경에서 LSTM 모델의 예측 성능이 향상될 수 있는 세부 하이퍼 파라미터 값을 실험 및 분석하고, 그 결과의 의미에 대해 고찰한다. 이를 위해 LSTM 모델에서 향상된 예측률을 보일 수 있는 epoch, hidden layer 수, optimizer 에 대해 분석하였고, 최적의 예측 결과를 도출해 줄 수 있는 최소 training data 개수도 함께 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.