• Title/Summary/Keyword: Underground structure fixed-end model

Search Result 2, Processing Time 0.015 seconds

A validity study on SSI analysis by comparing the complete system model and the underground structure fixed-end model (연속체 모델과 지하구조물 고정단 모델의 비교를 통한 SSI 해석의 타당성 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.757-772
    • /
    • 2018
  • Recently, earthquakes have occurred in large cities such as Gyeongju and Pohang, and seismic analysis studies have been actively conducted in various fields. However, since most of the previous seismic analyses have dealt with ground structures and the ground separately, there is a lack of a study on the complete soil-structure dynamic interaction. Therefore, in this study, a sensitivity analysis is conducted with MIDAS GEN and MIDAS GTS NX to apply the underground structure fixed-end model considering only the building and the complete system model considering both the building and the ground, respectively and the validity of dynamic analysis considering SSI is examined. As a result of the study, in most conditions it is found that the maximum horizontal displacement of the tall building in case of the underground structure fixed-end model is estimated to be smaller, the bending stress is larger, and the range of the weak part is smaller than that of the complete system model. Therefore, it is expected to be more reasonable to use the complete system model considering soil-structure interaction in seismic analysis.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.