• Title/Summary/Keyword: Underground storage tanks (USTs)

Search Result 7, Processing Time 0.031 seconds

Investigation of Ground Environment Around Underground Oil Storage Facilities Using the Envi-Cone Penetrometer System (환경콘에 의한 지하유류 저장시설주변 지반환경 조사)

  • 정하익;홍승서;김영진;홍성완;곽무영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.273-280
    • /
    • 2000
  • In recent years there has been a steady increase in geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation of contaminant in the ground. There are many techniques such as geophysical, drilling, sampling, md pushing techniques for investigation of contaminated ground. The most rapidly developing site characterization techniques for geoenvironmental purposes involve direct push technology, that is, penetration tests. The purpose of this study investigated underground oil storage tanks(USTs) using the envi-cone penetrometer system. The electrical resistivity sensor, pH sensor, ORP sensor, and thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective for investigation of contaminated ground surrounding the underground oil storage tanks.

  • PDF

Development of Preliminary Hazard Ranking System for Underground Storage Tanks Using Geographic Information System (GIS) (GIS를 이용한 지하저장탱크의 위해성 예비평가체계 개발)

  • 황상일;이상훈;이동수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.122-129
    • /
    • 1997
  • Spills or leaks of hazardous organic. compounds from underground storage tanks (USTs) are common contaminant sources of soil and groundwater. It would aid in managing USTs to assess and rank the potential environmental hazard posed by the USTs. Therefore, a preliminary hazard ranking system of USTs is developed in this study. The system is combined with GIS and consists of five steps: 1) selection of significant factors, 2) determination of the hierarchy of the factors. 3) determination of the weights, 4) calculation of the potential hazard, and 5) hazard assessment. The system is applied to the gas stations in Kwanak-gu, Seoul. The results indicate that the gas stations can be categorized in three groups as highly hazardous, less highly hazardous, and weakly hazardous. Seven gas stations belong to the highly hazardous group. Through the sensitivity analysis, four stations appear to possess high hazard potentials regardless of weights assigned to the factors. It appears that a user can make flexible application of the hazard ranking system with the user's experience and particular purposes. However, the system still needs validations against field survey data.

  • PDF

환경물리탐사 기법을 이용한 유류오염 주유소 부지 특성 조사

  • Kim Chang-Ryeol;Go Gyeong-Seok;Kim Jeong-Ho;Park Sam-Gyu;Son Jeong-Sul;Jeong Ji-Min
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.429-432
    • /
    • 2005
  • Geophysical investigations, as a non-invasive method, were conducted at the former gas station site contaminated with fuel hydrocarbons. GPR (Ground Penetrating Radar) survey was performed to locate buried objects such as USTs (Underground Storage Tanks) and fuel pipes which might serve as a origin of the site contamination. Additional GPR investigation and a resistivity survey were conducted to map water table and to characterize shallow geologic structures of the site. The results of the study have shown that seven USTs including one unknown UST and buried fuel pipes are present, and that the groundwater elevation varies with topography from approximately 1.5 to 3m below the surface and the water table is located in the residual soils above the bedrock in the site. The results also show that the geophysical methods can be a very useful tool for the characterization of the contaminated site.

  • PDF

Enhancement of Soil Flushing Method by Ultrasonic Radiation on Diesel Contaminated Soils (디이젤 오염토 수세시 초음파가 세척률 증가에 미치는 영향에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.401-406
    • /
    • 2000
  • Spilling of petroleum hydrocarbons such as gasoline, motor oils, and diesel fuel from underground storage tanks (USTs) is a major source of contamination to ground water and soils. In response to the need of developing an effective and economical cleanup technique, this study investigates the effectiveness of using sonication to enhance the soil flushing method. The study involves laboratory testing, and the testing was conducted using a specially designed and fabricated device to determine the effect of sonication on contaminant removal. The sonication was applied at 20 kHz frequency under different power levels. Test soil was Joomoonjin Sand, and diesel fuel was used as a contaminant of soil flushing test. The results of the investigation show that sonication enhanced the contaminant removal from soils significantly, and the degree of enhancement varied with power levels of sonication. Based on the results of the study, it is concluded that the flushing method with sonication has a great potential to become an effective method for removing petroleum hydrocarbons from the contaminated ground.

  • PDF

Biofilter를 이용한 diesel VOCs의 생물학적 제거

  • 이은영;최우진;최진규;김무훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.347-350
    • /
    • 2002
  • The petrochemical products can cause soil and groundwater contamination during their transportation and the use of the products, and while being contained in underground storage tanks(USTs) throughout the leakage. To treat the contaminated soil, the bioventing method is suitable for the remediation of semi-volatile compounds, such as diesel and kerosene. Biofiltration is one of possible method to treat the off-gas produced in the process of the bioventing. This study is related to the usage, effectiveness of treatment, and feasibility of two types of biofilter system made of ceramic-compost and polymer respectively to treat diesel VOCs at constant retention time of 20 sec. Compost biofilter showed the average removal efficiency of 73 % when the inlet concentration increased to 20 ppmv. Increased the inlet concentration decreased the microbial activities as well as the removal efficiency. On the contrary, the removal efficiency of the polyurethane biofilter was maintained at 88 % at the inlet concentration of 13 ppmv during ten days and was obtained to 80 % at the inlet concentration of 30 ppmv in spite of the drop of the efficiency in the sudden increase of the inlet concentration. At the beginning of the experiment it showed low removal efficiency at low inlet concentration due to the low microbial activity, however, as experiments proceed the removal efficiency could be obtained more than 80% at high inlet concentration.

  • PDF

Hot Air Injection/Extraction Method for the Removal of Semi-Volatile Organic Contaminants from Soils (토양내 저휘발성 유류오염물 제거를 위한 고온공기 주입/추출기술 연구)

  • Gu Chung-Wan;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Contamination of soils and groundwater by leakage of petroleum compounds from underground storage tanks (USTs) has become great environmental issues. Conventional methods such as soil vapor extraction (SVE) used for the remediation of unsaturated soils contaminated with volatile organic compounds might not be applied for the removal of semi-volatile organic compounds such as diesel fuels and PCBs, which have low volatility and high hydrophobicity. The objective of this study is to develop a hot air injection method to remove semi-volatile compounds. Additionally, operation parameters such as temperature, air flow rate, and water content are evaluated. Experimental results show that diesel ranged organics (DROs) are removed in the order of volatility of organic compounds. As expected, removal efficiency of organics is highly dependent on the temperature. It is considered that more than $90\%$ of organic contaminants whose carbon numbers range between 17 and 22 can be removed efficiently by the hot air injection-extraction method (modified SVE) over the $100^{\circ}C$. It is also found that increased air flow rate resulted in high removal rate of contaminants. However, air flow rate over 40 cc/min is not effective for the operation aspects, due to mass transfer limitation on the volatilization rate of the contaminants. The effect of the water content on the decane removal is minimal, but some components show large dependence on the removal efficiency with increasing water content.