• Title/Summary/Keyword: Underground road

Search Result 341, Processing Time 0.026 seconds

On the Factors and Economic Situations about the Concluding of Free Trade Agreement between South Korea and Mongolia (关于韩·蒙自由贸易协定缔结的因素和经济现状研究)

  • Pea, Sang-Muk;Pak, Yeo-Sun
    • Industry Promotion Research
    • /
    • v.1 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • South Korea and Mongolia are both the member countries of the World Trade Organization, but neither was the country with FTA. Nowadays, South Korea widely concludes the FTA with other countries, and the trade area has extended toward the neighboring continents and seas. Mongolia is a country with smallest economic entity but large in area and with abundant underground resources. And it's a main strategic zone of Eurasia. After the disintegration of the Soviet Union, Mongolia began to turn to market economy, and eagerly made effort to open and reform. With the expanse of trade and economy cooperation between South Korea and Mongolia, Mongolia started its sea road expanding. And the south Korea went to inland to get the necessary resources. Both of them feed its needs and obtain its profits.

A study on the improvement of the protective shield construction method and explosion-proof tube performance for tunnel blasting (터널 발파에 대한 방호쉴드 공법 및 방폭튜브 성능 개선 연구)

  • Sang-Hwan Kim;Soo-Jin Lee;Jung-Nam Kwon;Dong-gyun Yoo;Yong-Woo Kim;Kwang-Eun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.285-303
    • /
    • 2023
  • Interest in building underground spaces is increasing for the creation of downtown infrastructure and efficient space utilization. A representative method of utilizing underground space is a tunnel, and in addition to road tunnels, the construction of utility tunnels such as power conduits and utility conduits is gradually increasing. The current basic tunnel construction method can be divided into NATM (New Austrian Tunnelling Method) and TBM (Tunnel Boring Machine). The NATM is a reliable method, but it is accompanied by vibration and noise due to blasting. In the case of the TBM excavation method, there are disadvantages in terms of construction period and construction cost, but it is possible to improve economic feasibility by introducing appropriate complementary methods. In this study, a blasting method was develop using the NATM after TBM pre-excavation using the protective shield method. This is a method that compensates for the disadvantages of each tunnel construction method, and is expected to reduce construction costs, blasting vibration, and noise. In order to review the performance of the developed method, an experiment was conducted to evaluate the performance of explosion-proof tube to which a protective shield scale model was applied, and the impact of blasting vibration of the protective shield method was analyzed.

Investigation of Underground buried Cables based on Ground Penetrating Radar Data (지표 투과 레이더 데이터 기반 지하 매설 케이블 조사)

  • Choi, SungKi;Yoon, Hyung-Koo;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Min, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.105-113
    • /
    • 2024
  • Underground buried cables can cause disconnections during the construction of roads and other subterranean structures due to uncertain designs. This paper describes experiments conducted to detect and verify the locations of these cables utilizing ground penetrating radar (GPR). The experiments were carried out at an active road construction site, where cable burial was anticipated. The GPR used operated within a frequency range of 400 MHz to 900 MHz to probe underground structures. The exploration methodology consisted of an initial GPR test to survey the entire area, followed by a secondary test informed by the results of the initial experiment, incorporating a diverse and increased number of lines. The findings confirmed the hyperbolic reflection patterns of cables at consistent locations along the same lines. These patterns were then compared to existing designs to corroborate the presence of cables at the identified locations. This research establishes an effective GPR methodology based on the electromagnetic wave reflection pattern, specifically the hyperbola, to detect difficult-to-locate underground buried cables.

A study on the ventilation characteristics and design of transverse ventilation system for road tunnel (도로터널 횡류환기방식의 환기특성 및 시스템 설계 관한 연구)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.305-315
    • /
    • 2018
  • In this study, the ventilation characteristics and the relationships between the required ventilation flow rate and the ventilation system flow rate was investigated by numerical method for the optimum design of the transverse ventilation and semi-transverse ventilation system in road tunnels. The following results were obtained. In supply exhaust transverse ventilation system, the system supply-exhaust air flow rate is theoretically equal to the difference between the required ventilation flow rate and natural ventilation flow rate. However, it is shown that it increases by about 10% in the analysis results. And, in the case of the longitudinal air flow rate is increased by installed jet fans, ventilation system air flow rate is reduced. However, as the longitudinal air flow rate increases, the concentration of pollutants in the tunnel decreases, so the exhaust effect of pollutants decreases, and the effect of reducing the system air flow rate is decreased. In case of semi-transverse with only air supply, ventilation system air flow rate is equal to required ventilation air flow rate when tunnel inlet velocity is negative, but results is shown it is increased within about 13.3%. Also, it was found that ventilation effect can not be expected even if the jet fans are increased when the tunnel inlet velocity is negative.

A fundamental study on the jet fan capacity for smoke control considering thermal buoyancy force in tunnel fires (터널 화재 시 열부력을 고려한 제연용 제트팬 용량산정에 관한 기초 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Jo, Jong-Bok;Lee, Seung-Chul;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.501-511
    • /
    • 2018
  • As a result of the recent revision of the 'Guideline for Installation and Management of Fire Prevention Facility in Road Tunnels', the thermal buoyancy has to be taken into account when calculating the capacity of jet fans for smoke control in tunnel fires. However, there is no detailed methodologies for considering thermal buoyancy, so further study is needed. In this study, the thermal buoyancy in the tunnel is calculated by 3-D numerical simulation to consider the thermal buoyancy in case of fire in tunnels, and the relationship between heat buoyancy and vehicle drag, And the method of calculating the capacity of the jet fan for smoke control in tunnels. According to the analysis results, heat buoyancy acts as a resistance force in the case of a down-slope tunnel, and the pressure rise of jet fan for smoke control is not simply determined by the value of heat buoyancy at the entrance of the tunnel and the value of the vehicle drag at the exit. And it is analyzed that it is necessary to carry out a comprehensive review according to the location of the fire vehicle in tunnels.

A study on the effects of exhaust emission standards on the required ventilation rate in vehicle tunnels (차량 배출가스 규제기준이 소요환기량에 미치는 연구)

  • Kim, Hyo-Gyu;Ryu, Ji-Oh;Song, Seog-Hun;Jung, Chang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.409-420
    • /
    • 2017
  • The amount of ventilation required in making the tunnel ventilation plan is an important factor for determining the capacity of the ventilation system. The amount of pollutant emission for each type of vehicle (basic emission amount for the design of ventilation volume) for estimating the required ventilation amount is based on the 'Standard for Allowing the Emission for the car manufacturing', proposed by Ministry of Environment. However, in 2013, the Ministry of Environment announced the 'Regulations on the calculation method of total emissions from vehicles' as a regulation for calculating the pollutants emitted from vehicles. In this regulation, there are the 'Emission factors for each type of vehicle'. Therefore, it is necessary to review the application of the Regulation to the estimation of the required ventilation volume for the road tunnel. In this study, the influence of the strengthened emission regulation in 2015 caused by the case of manipulation of emission volume for the diesel vehicle on the calculation of the required ventilation volume in the road tunnel has been checked. In addition, in this study, the required ventilation volume calculated according to the Standard for Allowing the Emission for the car manufacturing revised by Ministry of Environment and "Emission factors for each type of vehicle" and that calculated according to the EURO emission standard were compared for analysis. This study has implications that it provides the basic design data for calculating the reasonable ventilation capacity of the ventilation system based on the ground for calculating the required ventilation volume.

The effect of grid number and the location and size of the fire source on the critical velocity in a road tunnel fire (도로터널 임계풍속 산정에 격자개수 및 화원의 크기와 위치가 미치는 영향)

  • Lee, Seung-Chul;Kim, Sang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.183-195
    • /
    • 2012
  • This study conducted comparative analysis to estimate critical velocity in tunnel fire under variation of grid number and the location and size of the fire source using three-dimensional computational fluid dynamics. In the target tunnel, by one-dimensional way, the calculated critical velocity in the tunnel, 2.22 m/s was estimated, if appling hydraulic diameter, instead of the tunnel height. According to six numerical analysis, each grid number has different position, temperature, and CO concentration of back-layering. In the case of the subject, the case 1 with 0.84 million grid was found to be the most ideal. According to the location and size of the fire source, after three cases for three-dimensional numerical analysis was performed, it is resulted that the location and size of the fire source affect the critical velocity, because air velocity distribution, temperature distribution and CO concentration distribution showed different each case. This is due to the difference of heat exchange area and locations. Therefore, it is necessary to decide appropriate grid number, and the location and size of the fire source for processing techniques through comparison with actual experiment results and three-dimensional analysis.

Model Test for the Determination of Distances between Jet-fans and Analysis of Recirculation (제트팬 설치 간격과 재유입 현상 분석을 위한 모형실험)

  • Kweon, Oh-Sang;Yoon, Chan-Hoon;Yoon, Sung-Wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • The domestic standards which used the standards of Road Association of Japan standards presents the distances of between jet-fans by the caliber of jet-fan. However, the Permanent International Association of Road Congress (PIARC) encourages it to be ten times a diameter of the tunnel. The distance of jet-fans installed in bases of two standards differs as much as two times, as so the proper basis after analysis of internal air current is needed since such difference can lead to disadvantage for selection of ventilation configuration. Based on Froude modeling theory, 1/40 scale acrylic model of a tunnel (215mm in diameter and 6.9m in length) and jet-fan (26.3mm and 31.6mm in caliber) was made for the measurement of changes in pressure and velocity due to the extension of tunnel for analysis of internal air current. And we measured the changes in pressure of surroundings of a jet-fan for confirmation of recirculation due to the exterior airs when the jet-fan is on. The results of the model test show that internal air current was not influenced by the caliber of jet-fan and its changes in pressure and velocity were stable in the point where it was nine times of diameter of the tunnel. Also the recirculation when the jet-fan is on could be verified. According to such results, in the cases of installing jet-fan in tunnels, the distances between jet-fans needs to be more than nine times the diameter.

A study on the calculation method for the number of vehicles in queue to determine the fire ventilation capacity in road tunnels - forced on the effect of queue length (도로터널의 제연용량 산정을 위한 정체차량대수 산정기법에 관한 연구 - 정체길이를 중심으로)

  • Yoo, Yong-Ho;Kim, Hyo-Gyu;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.41-52
    • /
    • 2016
  • When the queue length of congestion vehicles in tunnel fire is extended beyond tunnel length, the capacity of smoke control system needs to be increased in line with ventilation resistance. However, the vehicle queue length is not defined, so a rational equation is necessary in current fire prevention guideline. This study is intended to propose an equation to calculate the queue length considering the number of vehicles in queue in tunnel fire and evaluate the applicability by tunnel length as well. When it comes to normal tunnel, it is necessary to compare the vehicle queue length with tunnel length up to the length of 1,200 m in a bid to avoid applying the vehicle queue length excessively in case of fire. As a result of evaluation of applicability to model a tunnel, saving the number of jet fan for smoke control appeared to be effective. Besides, quantitative approach to explain the vehicle queue length through the relationship between the percentage of large vehicles and tunnel length was presented. Consequently, when the queue length of the congestion vehicles exceeds the tunnel length in determining the capacity of smoke control system in case of fire, the number of vehicles beyond the tunnel length needs to be excluded from estimating the ventilation resistance by vehicles.

A Fundamental Experiment for Field Application of the under Pavement Cavity Management System Using RFID (RFID를 이용한 도로하부 공동 관리 시스템의 현장 적용을 위한 기초 실험)

  • Shin, Eun Chul;Park, Kwang Seok;Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.391-401
    • /
    • 2019
  • Purpose: In this study, the location and history information of the cavity identified in the cavity exploration, such as repacking of the pavement, is not known. Therefore, it is to review the field applicability of RFID(Radio Frequency Identification) systems that enable anyone to accurately identify information. Method: Basic experiments were conducted for field applicability for cavity recognition distance, recognition and recognition rate, tag performance and tag type, reader interference, communication, underground burial impact, and duplicate recognition by RFID system. Results: As a result of the depth of tag and reader recognition, the electronic tag chips and readers applied in the basic experiment are judged to be effectively applicable in the field environment where the road cavity is located. Conclusion: The RFID tags for field application of the pavement management system store various information such as location and size of cavity, identification date, cause of occurrence, and surrounding underground facilities to maximize cavity management effect with a system that can be computerized and mobile utilization.