• 제목/요약/키워드: Underground mining

검색결과 300건 처리시간 0.026초

페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구 (A Study on the Correlation between Coal Mining Subsidence and Underground Goaf)

  • 최종국;김기동;송교영;조민정
    • 자원환경지질
    • /
    • 제41권4호
    • /
    • pp.453-464
    • /
    • 2008
  • 이 연구에서는 폐탄광 지역에서 발생하는 지반침하와 지하 채굴적 사이의 상관성을 지질, 지하구조, 탄층의 심도와 두께, 지하갱도의 분포 측면에서 분석하고자 하였다. 연구대상 지역은 강원도 삼척시 삼척탄전에 속하며, 채굴적 특성을 고려하지 않은 기존의 연구에서 수치지질도, 수치갱내도, 현장조사보고서 자료와 GIS의 공간분석기법을 적용하여 지반침하 취약성이 높게 분석된 지역에 해당된다. 연구지역에 대한 수치지질도 및 지반안정성 조사 보고서를 기반으로 연구지역내에서 지반침하가 관측된 지역의 분포, 지표 및 지하의 지질구조와 탄층의 분포현황을 분석하였고, 수치갱내도 자료를 이용하여 지하 갱도의 심도 및 중첩분포 현황을 분석하였다. 연구결과, 지표의 암석 강도 저하, 얕은 심도와 두꺼운 층후의 함탄층 존재가 지반침하 발생과 밀접한 관련이 있는 것으로 분석되었다. 또한, 다수의 중첩된 갱도의 분포 및 얕은 심도의 지하 갱도 존재, 단층의 존재 역시 지반침하발생에 영향을 주는 주요인으로 확인되었다. 지반침하 위험지역을 정량적으로 예측함에 있어, 연구결과로 나타난 지반침하 관련 요인을 추가로 데이터베이스화하여 폐탄광 지역별로 적합한 지반침하예측 모델을 구축한다면 폐탄광 지역의 지반침하위험 예측 및 예방에 매우 효과적일 것으로 판단된다.

폐광지역 침하방지를 위한 지반 및 구조물기초 보강 (A Case Study on Reinforcement of Ground and Foundation against Subsidence in Abandoned Mining Area)

  • 김도형;최창림;김동현;이두화;이백송;제해찬
    • 터널과지하공간
    • /
    • 제17권4호
    • /
    • pp.255-265
    • /
    • 2007
  • 폐광지역의 침하발생 메커니즘 및 영향범위는 현장의 지반조건, 지압분포, 채굴적의 기하학적인 조건, 상부 구조물의 하중 조건 등에 따라 달라지므로 이를 예측하기는 매우 어렵다. 또한 지질 및 지반 상태, 탄층의 발달 상태, 채굴방법 등이 채굴현장마다 다르므로 기존의 보강대책을 그대로 적용하는 데에는 한계가 있다. 본 연구에서는 국내 폐광지역에 대한 합리적인 보강대책 수립을 위해 광역 채굴현황조사를 바탕으로 채굴적의 분포를 파악하고, 대심도 시추조사, 탄성파 토모그래피, 시추공 영상촬영 등의 상세 지반조사를 수행하여 석탄층의 분포현황과 암반이완상태를 파악하였다. 이를 토대로 지반침하이론에 의해 침하발생 유형을 예측하고 지반침하량을 산정하였다. 또한, 연구대상 지역의 침하발생 메커니즘을 분석하였으며, 기존 폐광지역 보강사례를 분석하여 각 침하원인별로 대상지역의 지반특성에 부합되는 지반 및 구조물기초에 대한 보강대책을 수립하였다.

석회석 광산의 지하갱도 안정성평가를 위한 암반분류법 개발 (A Suggestion of Rock Mass Classification Systems for Stability of Underground Limestone Mines - A Case Study)

  • Karanam U. M. Rao;Choon Sunwoo;Chuug, So-Keul;Park, Sung-Oong;Jeon, Yang-Soo
    • 터널과지하공간
    • /
    • 제13권6호
    • /
    • pp.421-433
    • /
    • 2003
  • 자원개발에 있어서 환경문제로 석회석광산의 채굴이 노천에서 지하채굴로 점차 전환되면서 석회석 채광에 따르는 갱도의 안전문제가 대두되고 있다. 무지보로 유지해야 하는 갱도의 크기문제를 결정하는 것이 현장에서 가장 어려 문제중의 하나이다. 따라서 석회석 지하채광장과 갱도에서 Q시스템과 RMR 암반분류법을 적용하여 지하갱도의 안전성을 평가하기 위한 암반분류법을 개발하기 위해서 두 개의 석회석 광산을 대상으로 암반조사가 이루어 졌다. 기본적으로 Q 시스템과 RMR 암반분류법의 상관관계를 이용하여, 석회석 광산에 적용할 수 있도록 암반분류법을 수정하였고 또한 무지보 안전갱도 폭을 결정하기 위한 새로운 시도가 이루어 졌다.

A Method to Protect Mine Workers in Hot and Humid Environments

  • Sunkpal, Maurice;Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • 제9권2호
    • /
    • pp.149-158
    • /
    • 2018
  • Background: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.

Model test on slope deformation and failure caused by transition from open-pit to underground mining

  • Zhang, Bin;Wang, Hanxun;Huang, Jie;Xu, Nengxiong
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.167-178
    • /
    • 2019
  • Open-pit (OP) and underground (UG) mining are usually used to exploit shallow and deep ore deposits, respectively. When mine deposit starts from shallow subsurface and extends to a great depth, sequential use of OP and UG mining is an efficient and economical way to maintain mining productivity. However, a transition from OP to UG mining could induce significant rock movements that cause the slope instability of the open pit. Based on Yanqianshan Iron Mine, which was in the transition from OP to UG mining, a large-scale two-dimensional (2D) model test was built according to the similar theory. Thereafter, the UG mining was carried out to mimic the process of transition from OP to UG mining to disclose the triggered rock movement as well as to assess the associated slope instability. By jointly using three-dimensional (3D) laser scanning, distributed fiber optics, and digital photogrammetry measurement, the deformations, movements and strains of the rock slope during mining were monitored. The obtained data showed that the transition from OP to UG mining led to significant slope movements and deformations that can trigger catastrophic slope failure. The progressive movement of the slope could be divided into three stages: onset of micro-fracture, propagation of tensile cracks, and the overturning and/or sliding of slopes. The failure mode depended on the orientation of structural joints of the rock mass as well as the formation of tension cracks. This study also proved that these non-contact monitoring technologies were valid methods to acquire the interior strain and external deformation with high precision.

Investigation on the propagation mechanism of explosion stress wave in underground mining

  • Wang, Jiachen;Liu, Fei;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.295-305
    • /
    • 2019
  • The bedding plane has a significant influence on the effect of blasting fragmentation and the overall performance of underground mining. This paper explores the effects of fragmentation of the bedding plane and different angles by using the numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include a dynamic compressive and tensile failure which is applied to simulate the fractures generated by the explosion. Firstly, the cracks propagation with the non-bedding plane in the coal with two boreholes detonated simultaneously is calculated and the particle velocity and maximum principal stress at different points from the borehole are also discussed. Secondly, different delay times between the two boreholes are calculated to explore its effects on the propagation of the fractures. The results indicate that the coal around the right borehole is broken more fully and the range of the cracks propagation expanded with the delay time increases. The peak particle velocity decreases first and then increases with the distance from the right borehole increasing. Thirdly, different angles between the bedding plane and the centerline of the two boreholes and the transmission coefficient of stress wave at a bedding plane are considered. The results indicated that with the angles increase, the number of the fractures decreases while the transmission coefficient increases.

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

발파진동 및 비산충격에 대한 광주 안정성 분석 (Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting)

  • 박현식;김지수;류복현;강추원
    • 화약ㆍ발파
    • /
    • 제30권2호
    • /
    • pp.9-20
    • /
    • 2012
  • 최근 광업계는 지하개발이 주로 이루어지며, 대형 굴착장비의 보급으로 인해 갱도 및 채굴공동이 지하심 부화되고 있다. 채광설계 시 채굴공동의 붕락방지와 채광작업의 안전성 확보를 위해 채굴공동 및 광주의 설계가 매우 중요하게 대두되고 있다. 이에 본 연구는 지하채굴공동의 발파진동계측을 통한 발파진동 예측식 도출을 수행하였고, 채굴공동의 발파시 발생되는 비산석의 파쇄입도 분석과 비산거리 측정을 통하여 광주에 가해지는 이론적인 충격진동을 산정하였다. 지하채굴공동의 발파에 따른 광주의 영향을 검토하기 위하여 유한요소해석을 수행하여 발파진동 예측식과 비교하였으며, 채굴공동의 발파로 인해 발생되는 비산석이 광주에 충격이 가해졌을 때의 충격진동과 이론적인 충격진동을 비교, 분석하였다.

A Retrospective Comparative Study of Serbian Underground Coalmining Injuries

  • Ivaz, Jelena S.;Stojadinovic, Sasa S.;Petrovic, Dejan V.;Stojkovic, Pavle Z.
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.479-489
    • /
    • 2021
  • Background: During 2011, a study was undertaken to assess safety conditions in Serbian underground coalmines by analysis of injury data. The study covered all Serbian coalmines, identified week spots from the aspect of safety, and recommended possible courses of action. Since then, Serbia has made changes to safety and health legislation; all coalmines introduced new preventive measures, adopted international standards, and made procedures for risk management. After 10 years a new study has been performed to analyze the impact of these changes. Materials and methods: In this study, the injuries that have occurred in the Serbian underground coal mines over the last 20 years were analyzed. Statistical data analysis was performed by IBM SPSS Statistics v23. The injuries that occurred in the last ten years were compared with the results of the previous study (2000-2009). The average values of injury rates for both periods were compared for each of the categories (severity, age, body part, qualification), and the results were presented as absolute difference or percentile difference. Results: The results showed reduction in the number of injuries in the category of 20-30 years old workers, where the new training procedures for workers, which were set by mandatory legal regulations, certainly contributed. They also showed an increase in the number of injuries in the category of old workers, which indicates that the law did not have a positive effect on this category. Conclusion: The total number of injuries is still high; therefore, it is necessary to introduce mechanization and automation in mines and have a better policy for older workers who retire later nowadays.

Numerical study on mechanical and failure properties of sandstone based on the power-law distribution of pre-crack length

  • Shi, Hao;Song, Lei;Zhang, Houquan;Xue, Keke;Yuan, Guotao;Wang, Zhenshuo;Wang, Guozhu
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.421-434
    • /
    • 2019
  • It is of great significance to study the mechanical properties and failure mechanism of the defected rock for geological engineering. The defected sandstone modeling with power-law distribution of pre-cracks was built in this paper by Particle Flow Code software. Then the mechanical properties of sandstone and the corresponding failure process were meticulously analyzed by changing the power-law index (PLI) and the number of pre-cracks (NPC). The results show that (1) With the increase of the PLI, the proportion of prefabricated long cracks gradually decreases. (2) When the NPC is the same, the uniaxial compressive strength (UCS) of sandstone increases with the PLI; while when the PLI is the same, the UCS decreases with the NPC. (3) The damage model of rock strength is established based on the Mori-Tanaka method, which can be used to better describe the strength evolution of damaged rock. (4) The failure mode of the specimen is closely related to the total length of the pre-crack. As the total length of the pre-crack increases, the failure intensity of the specimen gradually becomes weaker. In addition, for the specimens with the total pre-crack length between 0.2-0.55 m, significant lateral expansion occurred during their failure process. (5) For the specimens with smaller PLI in the pre-peak loading process, the concentration of the force field inside is more serious than that of the specimens with larger PLI.