• Title/Summary/Keyword: Underground Structures

Search Result 976, Processing Time 0.023 seconds

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

Dynamic Analysis of Tunnel Structures Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 터널 구조물의 동적 해석)

  • Kim, Hyon-Jung;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.101-106
    • /
    • 2005
  • When a underground structure is constructed at the site composed of soft soil, the behavior of a underground structure Is much affected by the motion of soft soil. Therefore, the effect of soil-structure interaction is an important consideration in the design of a underground structure such as tunnel at the site composed of soft soil. This paper presents the results of the study on dynamic response of tunnel structures and soil-structure interaction effects. The computer program SASSI was used in seismic analysis of tunnel structures because it is more capable of analyzing dynamic response or structures considering soil-structure interaction. As regards the results, the flexibility of surrounding soil affects dynamic response characteristics of tunnel structures and response of tunnel structures can be amplified.

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures (대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근)

  • Lee, Yun-Su;Park, Do-Hyun;SunWoo, Choon;Kim, Gyo-Won;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

A Case Study on the Effects on Underground Structure due to Changes in the Groundwater Level and Ground Stress (지반응력 및 지하수위 변화가 지하철구조물 안정성에 미치는 영향 사례연구)

  • Chung, Jeeseung;Lee, Sungil;Lee, Kyuyoung;Jung, Haewook;Kim, Hongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.13-21
    • /
    • 2015
  • Recently, land subsidence and sinkhole are generated due to a change in the groundwater level in the city. For this reason, the necessity for management of stable underground water level is on the rise. In this study, it was conducted for the underground structure that passes through the lower of bus transfer center construction site to examine the influence on the stability for underground structures to changes in the groundwater level and effective stress, the coupled finite element analysis and structural analyses were performed to evaluate stability for underground structure. It is to secure stability for underground structures according to underground water level declines. In this way, effective construction management will be made by previewing and forecasting the influence on the ground behavior and adjacent structures due to changes in the groundwater level.

A Study on the Safety Distance of Underground Structures in Asepct of Ground Vibration Velocity due to Explosions (지중 구조물의 지반 진동 안전거리 설정에 관한 현장적용연구)

  • Park, Sangjin;Kang, Jiwon;Park, Young Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • The necessity to consider stability of underground structures constructed below or adjacent ammunition depots has been increased since the expansion of urban area and construction of infrastructure. However, there are a few studies on influence of accidental explosion on underground structures. In this study, the process of assessing the stability of underground structures is suggested and its applicability is verified through the case study. AUTODYN and SPACECLAIM are used to execute the structure and geotechnical modelling, and explosion effect is simulated and vibration velocities are calculated. According to the result of this case study, it is concluded that underground structure constructed 70m below ground might be rarely influenced by the simulated explosion. The process used in this study could be used to design the underground ammunition complex and analyse the stability of underground facilities being influenced by periodical vibration.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.

A Case Study on Earthquake Resistant Reinforcement Method for the Corner of Existing Underground R.C Box Structures using Pre-flexed Member System (프리플렉스 부재를 이용한 기존 철근콘크리트 지중박스구조물 우각부에 대한 내진보강공법 사례연구)

  • Chung, Jee-Seung;Kim, Jin-Gu;Lee, Jin-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.68-74
    • /
    • 2016
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'Pre-flexed member system') is used to improve seismic capacity of the RC box structure. The pre-flexed member system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without strength member system. Numerical results confirmed that the proposed pre-flexed member system can enhance the seismic capacity of the underground RC box structures.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.