• Title/Summary/Keyword: Underground Structures

Search Result 978, Processing Time 0.027 seconds

Analysis of Ground Behavior applied to the Design of Underground Opening Structures (지하공동구조물의 설계시 적용되는 지반거동해석)

  • 박남서;이성민
    • Explosives and Blasting
    • /
    • v.15 no.1
    • /
    • pp.44-60
    • /
    • 1997
  • The design of underground cavern is basically governed by the mechanical properties of ground mass distributed around excavation. It is seldom possible to consider all the factors of ground mass properties in the evaluation of ground mass behavior as well as to classify those factors to a simple category. Until computer sciences have developed to calculate complex and laborious mechanical simulation of underground openings, ground behavior was quantitatively and qualitatively evaluated using empirical classification system. In this paper, analysis methods of ground behavior for underground cavern using the prediction of loosening zone, empirical method derived from rock mass classification and element stress analysis are described with chronological sequence.

  • PDF

Three-dimensional Mixed-use Complex Spaces and Setting Criteria for Road Sections for Three-dimensional Addressing

  • Kim, Ji Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.455-465
    • /
    • 2020
  • As cities continue to expand and additional underground structures are constructed, a policy is being planned to expand addresses, which are national framework data. In this study, the application scope of a proposed 3D (three-dimensional) mixed-use complex space for assigning 3D addresses was defined, based on past research on 3D address systems and by analyzing related laws. Underpass shopping malls, underground walkways (excluding underground shopping malls), and 3D mixed-use transfer centers with a gross floor area of 2,000㎡ or more are connected with each space by underground walkways or public paths. In addition, the detailed space corresponding to the public space of the 3D mixed-use complex space was presented and distinguished from the space to which the detailed address is assigned. The criteria for setting the road section were presented based on the intermediate space, which is a characteristic of 3D mixed-use complex spaces. The proposed criteria were applied to the Express Bus Terminal station (3D mixed-use transfer center) and COEX mall (underpass shopping malls). Thus, the road section was set for an unfamiliar 3D mixed-use complex space. However, by applying the proposed criteria to various 3D mixed-use complex spaces, additional and detailed criteria for different cases should be prepared.

A Study on the Outside Waterproof Method of Ground using Wire-mesh and Non-hardening Viscosity WaterproofBusiness (비경화성 점착 방수제와 보강메쉬를 이용한 지하 외방수 공법에 관한 연구)

  • Moon, You-Seok;Lee, Sin-Chun;Gwon, Gi-Ju;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.213-217
    • /
    • 2009
  • Underground structures are built into concrete like a architecture and public works. Concrete has watertightness as such, But buildings are leaking from the cracks. Recently, construction method do a lot of close construction in the downtown area. So architects are using the method for the outer layer of a two-layer wall to save spaces. They have been using Top-down method and waterproof agent method and others to outer layer of a two-layer wall method. But, There are many leakage in underground structure from lack on requirements performance of materials. Therefore, I hope to test the outside Waterproof Method of Ground using Wire-mesh and Non-hardening Viscosity Waterproof. In addition to, I wish to apply as outside waterproof method for the section for the outer layer of a two-layer wall in underground structure.

  • PDF

Analysis of Ground Behavior applied to the Design of Underground Opening Structures (지하공동구조물의 설계시 적용되는 지반거동해석)

  • 박남서;이성민
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.38-53
    • /
    • 1991
  • The design of underground cavern is basically governed by the mechanical properties of ground mass distributed around excavation. It is seldom possible to consider all the factors of ground mass properties in the evaluation of ground mass behavior as well as to classify those factors to a simple category. Until computer sciences have developed to calculate complex and laborious mechanical simulation of underground openings, ground behavior was quantitatively and qualitatively evaluated using empirical classification system. In this paper, analysis methods of ground behavior for underground cavern using the prediction of loosening zone, empirical method derived from rock mass classification and element stress analysis are described with chronological sequence.

  • PDF

Dynamic response of underground box structure subjected to explosion seismic wave

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Fan, Pengxian;Feng, Shufang
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.669-680
    • /
    • 2016
  • In this paper, the underground box structure is discretized as a system with limited freedoms, and the explosion seismic wave is regarded as series of dynamic force acting on the lumped masses. Based on the local deformation theory, the elastic resistances of the soil are simplified as the effects of numbers of elastic chain-poles. Matrix force method is adopted to analyze the deformation of the structure in elastic half space. The structural dynamic equations are established and by solving these equations, the axial force, the moment and the displacement of the structure are all obtained. The influences of size ratio, the incident angle and the rock type on the dynamic response of the underground box structure are all investigated through a case study by using the proposed method.

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

암반절리와 시공단계를 고려한 지하 구조체의 해석

  • 김문겸;장정범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.179-194
    • /
    • 1991
  • This paper explains outline of a behavior analysis program for underground structures, and its application to a tunnel problem. The program can deal with elasto-plastic behavior of medium and supporting structures, discontinuous behavior due to existing joint, creation and propagation of cracks. in-situ loading condition, and incremental behavior due to stepwise excavation, etc. The program also has additional capabilities such as graphic output of mesh, displacement pattern, stress condition, and safety factor contour, and automatic mesh generation during the excavation steps.

  • PDF

Behavior of durable SFRC Structures for the Protection of Underground Environment (토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

A Case Study on Repairing Work of Leakage of River-crossing Underground Structure (하천통과 지하구조물의 누수 보수 대책)

  • 이종은;최석원;노현창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.801-809
    • /
    • 2000
  • Until recently as a method of repairing leaking problem, generally urethane series were used for many structures as subway, box culvert etc. However the lacking of sufficient penetration capacity have made it difficult to repair such structures completely. Now, we could achieve enhanced quality of repairing work by using new material which was compounded of urethane series and cement series properly. This material can penetrate concrete structure efficiently and move interactively with the structure in case of the thermal expansion. Besides of this, we could prevent expecting leakage through several improvements on the aspects of design, materials and site implementation.

  • PDF

Behavior Case Study of Temporary Structures during Underground Extension Work by Field Measurement (현장계측을 통한 지하증축공사 중 가설구조물의 거동 사례연구)

  • Kim, Uiseok;Min, Byungchan;Kang, Minkyu;Kim, Dongkwan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.8
    • /
    • pp.5-13
    • /
    • 2020
  • During the construction of underground space expansion of old facilities, it is necessary to secure temporary residence space for existing residents as well as noise and vibration issues during construction, and in the case of commercial, industrial, and social use, damage is expected from suspension of the use of facilities. There is a need for a technology that minimizes noise and vibration during underground expansion, enabling the use of existing facilities even during construction. In this study, a practical underground extension model is proposed by analyzing the behavior of the temporary structure and the surrounding ground as a result of measurement at each construction stage for a actual construction site. In order to solve the problems that occurred during construction, the basement slabs were placed in advance after the initial excavation. The measurement results (building inclinometer, crack measurement system, structure inclinometer and surface settlement meter) at the site were reviewed to analyze the behavior of the temporary structure and surrounding ground. As a result, it was confirmed that the inclinometer of the building and the structural inclinometer showed a tendency that the displacement after the slab line was placed was reduced or converged. The placement of basement slabs during underground extension not only relived the noise and vibration problems during construction, but also secured the stability of structures.