• Title/Summary/Keyword: Underground Excavation

Search Result 844, Processing Time 0.028 seconds

Mechanical Characteristics of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착 잔토를 재활용한 지중전력구조물 뒷채움재의 역학적 특성)

  • Cheon, SeonHo;Jeong, Sangseom;Lee, DaeSoo;Kim, DaeHong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.303-312
    • /
    • 2006
  • This study is to evaluate the mechanical characteristics of flowable backfill and offer a guide line of mixture proportion based on soil types for constructing underground power utilities. Flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM are reduced equipment costs, faster construction, re-excavation in the future, and the ability to place materials in confined spaces, which are narrow parts or perimeters of underground power cables nearly impossible for compaction. The flowable slurry mixed with 17 soils and 6 accelerated mixtures in the laboratory were evaluated for flowability and unconfined compressive strength to meet the target values of this study.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Limestone (고위력 폭약의 석회암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.17-28
    • /
    • 2023
  • Recently, the utilization of underground space for research facilities and resource development has been on the rise, expanding development from shallow to deep underground. The establishment of deep underground spaces necessitates a thorough examination of rock stability under conditions of elevated stress and temperature. In instances of greater depth, the stability is influenced not only by the geological structure and discontinuity of rock but also by the propagation of ground vibrations resulting from earthquakes and rock blasting during excavation, causing stress changes in the underground cavity and impacting rock stability. In terms of blasting engineering, empirical regression models and numerical analysis methods are used to predict ground vibration through statistical regression analysis based on measured data. In this study, single-hole blasting was conducted, and the pressure of the blast hole and observation hole and ground vibration were measured. Based on the experimental results, the blast pressure blasting vibration at a distance, and the response characteristics of the tunnel floor, side walls, and ceiling were analyzed.

A numerical study for initial elastic displacement at tunnel side-wall due to configuration of the tunnel excavation (굴착단면 형상에 따른 터널 초기탄성변위의 수치해석적 연구)

  • Kim, Sang-Hwan;Jung, Hyuk-Il;Lee, Min-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.175-184
    • /
    • 2002
  • Ground reaction curve is very useful information for estimating the installation time of the tunnel support. The ground reaction curve can be estimated by analytical closed form solutions derived in case of circular section and isotropic stress condition. The nature of the ground reaction, however, depends significantly on tunnel configurations. Nevertheless, few purely analytical and experimental studies of this problem due to tunnel configurations appear to have been carried out. Therefore, it is necessary to investigate the influence of tunnel configurations in order to use simply in practical design. This paper describes a numerical study for the intial elastic displacement in the ground reaction curve due to configuration of tunnel excavation. In order to evaluate the applicability of analytical closed form solution in practical design, the parametric studies were carried out by numerical analysis in elastic tunnel behaviour. In the studies, S value, namely configuration factor, defined as the ratio between tunnel height (b) and width (a), varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30 MPa for each S values. The results indicated that the self-supportability of ground is larger in the ground having low S value. It, however, is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It should be necessary to perform the additional numerical analysis.

  • PDF

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

Development of a groundwater contamination potential evaluation technique by improving DRASTIC Index for a tunnel excavation area (개선된 DRASTIC 기법을 이용한 터널굴착 예정지역의 지하수 오염 가능성 평가기법 개발에 관한 연구)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Choi, Young-Tae;Lee, Han-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.71-88
    • /
    • 2003
  • The DRASTIC system is widely used for assessing regional groundwater pollution susceptibility by using hydrogeological factors such as depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, hydraulic conductivity. This study is providing Modified Drastic Model to which lineament density, land use, influence of groundwater drawdown caused by tunnel excavation are added as additional factors using geographic information system, and then to evaluate groundwater contamination potential of ${\bigcirc}{\bigcirc}$ area. For statistical analysis, vector coverage per each factor is converted to grid layer and after each correlation coefficient between factors, covariance, variance, eigenvalue and eigenvector by principal component analysis of 3 direction, are calculated, correlation between factors is analyzed. Also after correlation coefficients between general DRASTIC layer and rated lineament density layer, between general DRASTIC layer and rated land use layer, between general DRASTIC layer and rated tunnel excavation influence layer are calculated, final modified DRASTIC model is constructed by using them with each weighting. When modified DRASTIC model was compared with general DRASTIC model, contamination potential in modified DRASTIC model is fairly detailed and consequently, vulnerable area which has high contamination potential could be presented concretly.

  • PDF

Evaluation of rock load based on stress transfer effect due to tunnel excavation (굴착으로 인한 응력전이효과를 고려한 터널의 지반이완하중 평가)

  • Lee, Jae-Kook;Kim, Jung-Joo;Rehman, Hafeezur;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.999-1012
    • /
    • 2017
  • Theoretical, empirical and numerical methods are used to evaluate the rock load due to tunnelling. Theoretical and empirical methods do not consider ground conditions, tunnel shape, and construction conditions. However, through numerical analysis, it is possible to analyze the displacement and stresses around tunnel due to its excavation, and evaluate the rock load considering ground and construction conditions. The stress transfer ratio(e) which is defined as a ratio of the difference between the major and minor principal stresses to major principal stress is used in order to understand the stress transfer effect around the tunnel excavation using numerical analysis results. The loosend area around tunnel periphery was found based on this approach. The difference of rock load from stress transfer effect was found according to the ground grade. From comparison, rock load obtained from stress transfer effect (e = 10%) were somewhat larger than the results obtained from the critical strain method, but smaller than those obtained from theoretical and empirical methods. The stress transfer effect approach considers the ground condition, tunnel shape; therefore, it can be applied to evaluate the rock load in concrete lining design.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

A study on the evaluation method and reinforcement effect of face bolt for the stability of a tunnel face by a three dimensional numerical analysis (터널막장안정 평가기법 및 막장볼트의 보강효과에 관한 수치해석적 연구)

  • Kim, Sung-ryul;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.11-22
    • /
    • 2009
  • Tunnel excavation with several sections and appropriate auxiliary measures such as face bolt and pre-grouting are widely used in case of weak and less rigid ground for the stability of a tunnel face during excavation. This papers first described the evaluation methods proposed in technical literature to maintain the tunnel face stable, and then studied by FEM analysis whether face reinforcement is need in what degree of ground deformation and strength features for the stability of a tunnel face when excavating by full excavation with sub-bench. Lastly, a three dimensional FEM analysis was performed to study how the tunnel face itself and the ground around the tunnel behave depending on different bolt layouts, length of bolts, number of bolts. There were relative differences in comparison of results on the stability of a tunnel face by a theoretical evaluation methods and FEM analysis, but the same in reinforced effect of face. It was found that the stability of a tunnel face can be obtained with face bolt installed longer than 1.0D (tunnel width), bolt density of about 1 bolt per every $1.5\;m^2$ (layout of grid type), and reinforcement area of $120^{\circ}$ arch area of upper section.

A numerical analysis study on the effects of rock mass anisotropy on tunnel excavation (암반의 이방성이 터널 굴착에 미치는 영향에 대한 수치해석적 연구)

  • Ji-Seok Yun;Sang-Hyeok Shin;Han-Eol Kim;Han-Kyu Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • In general tunnel design and analysis, rock masses are often assumed to be isotropic. Under isotropic conditions, material properties are uniform in all directions, leading to a higher evaluation of tunnel stability. However, actual rock masses exhibit anisotropic characteristics due to discontinuities such as joints, bedding planes, and faults, which cause material properties to vary with direction. This anisotropy significantly affects the stress distribution during tunnel excavation, leading to non-uniform deformation and increased risk of damage. Therefore, thorough pre-analysis is essential. This study analyzes the displacement and stress changes occurring during tunnel excavation based on rock anisotropy. A three-dimensional numerical analysis was performed, selecting anisotropy index and dip angles as variables. The results showed that as the anisotropy index increased, the displacement in the tunnel increased, and stress concentration became more pronounced. The maximum displacement and shear stress were observed where the dip planes met the tunnel.

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.