• Title/Summary/Keyword: Underground Area

Search Result 1,147, Processing Time 0.029 seconds

Allometric Equations and Biomass Expansion of Yellow Poplar(Liriodendron tulipifera) in Southern Korea (백합나무의 상대생장식 및 현존량 확장계수)

  • Kang, Min Sun;Jang, Kyoung Soo;Son, Young Mo;Kim, Rae Hyun;Park, In Hyeop;Lee, Kye Han
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.463-471
    • /
    • 2016
  • The purpose of this study was to develop allometric equations for identifying the amount of wood and building biomass statistics of L. tulipifera by density, biomass expansion factors and root ratio. For this purpose, total of 40 trees were sampled, which were used consideration the area and the DBH class. As a results, the wood density was $0.43g{\cdot}cm^{-3}$, biomass expansion factors were 1.2, root ratio was 0.2 and uncertainty were 3.9%, 4.6%, 24.1%, respectively. Allometric equations for above ground of L. tulipifera trees were $W=0.060D^{2.524}$. Total and underground allometric equations were $W=0.063D^{2.578}$, $W=0.010D^{2.591}$, respectively.

Environmental Effects and Characteristics of Ground Vibration Caused by Tunnel Blasting in the Vicinity of an Apartment (터널 발파로 인한 아파트 인근지역에서의 지반진동 전파특성 및 영향 평가 연구)

  • 최병희;류창하;백승규
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Explosive blasting in tunnel excavation produces ground vibration and air blast as its side effects, which may cause complaints from nearby residents. This study was intended to investigate the propagation characteristics of ground vibration induced by tunnel blasting and to evaluate its effects on the residential structures near the site. We have conducted field measurements for 6 blasts and acquired vibration data from 70 measuring points, some of which on positioned inside the tunnel for comparative reason. Various documentation was reviewed to determine an allowable level of peak particle velocity for the residential structures in the area and the allowable limit was set to 0.5 cm/sec. Propagation equations for peak particle velocities were derived from regression analyses using the data acquired at both the surface and the underground tunnel. Finally we proposed appropriate predictive equations for the two areas and a safe blasting criterion.

Analysis about Fill Deposit Poor Drainage through Permeability Test and Groundwater Monitoring (투수시험과 지하수 모니터링을 통한 매립층의 배수불량 원인 분석)

  • Jung, Hee-Suk;Lee, Kang-Il;Kim, Joon-Seok
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • Purpose: The area such as historic sites where distributed in the hills surrounded by the mountains in the past, if heavy rains occur, soil that distributed in the substructure of a sedimentary layer's permeability decreases therefore, water do not smoothly drainage and increases surface structures' moisture content. Therefore, many phenomena occur such as the muddy ground. This experiment tried to figure out the cause of poor drainage, predicting poor drainage system when rainfall occur. So not only the base of cultural properties distributed in the historic site, but also have big influences on the upper structure. Method: We are going to propose an improvement plan through the various sites exploration and the field permeability test. In addition, analyze interrelationship to figure out the cause of the poor drainage through monitoring under ground water. Conclusion: As the result of the experiment, the cause of the poor drainage system formed on shallow depth of ground level inside of a land. We can see that soil of surface and fill deposit permeability was in poor condition. Therefore, it was in very inappropriate hydrogeological condition when surface water permeate into the underground when rainfall occurs.

Analysis on Signal Properties due to Concurrent Leaks at Two Points in Water Supply Pipelines (상수도 배관에서 두 지점의 동시 누수에 따른 신호특징 분석)

  • Lee, Young-Sup
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • Intelligent leak detection is an essential component of a underground water supply pipeline network such as a smart water grid system. In this network, numerous leak detection sensors are needed to cover all of the pipelines in a specific area installed at specific regular distances. It is also necessary to determine the existence of any leaks and estimate its location within a short time after it occurs. In this study, the leak signal properties and feasibility of leak location detection were investigated when concurrent leaks occurred at two points in a pipeline. The straight distance between the two leak sensors in the 100A sized cast-iron pipeline was 315.6 m, and their signals were measured with one leak and two concurrent leaks. Each leak location was described after analyzing the frequency properties and cross-correlation of the measured signals.

A Study of Explosive Jet-cutting Technology by Linear Shape Charges (성형폭약에 의한 폭발절단기술에 관한 연구)

  • 이병일;박근순;공창식;김광태
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.516-525
    • /
    • 2000
  • Recently, the demand for pollution-free demolition work of old reinforced concrete and steel structure has rapidly increased as the redevelopment of urban area has been accelerated. This study deals with linear shape charges for explosive jet cutting on steel structure. We have tested material and shape of steel structure, characteristics of thickness and strength, shape of linear shape charges, type of shape charges, cumulative charges, type of liner, stand-off distance, detonation method. effect of sound and vibration by air blast in explosive jet cutting method. So, We developed linear shape charges in order to take advantage of optimum explosive jet cutting condition. Shape charges were made of PETN explosives. We obtained the experimental formula to decide the amount of explosive needed for thickness of steel structure plate. There are prospects for application of the explosion curving technology under the open space conditions for dismantling the steel structure and steel bridge, scrapped old boats, which are going out of service.

  • PDF

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.

Numerical Analysis on Morphologic Characteristics of Rock Slope for Reducing Rockfall Risk (낙석의 위험성 경감을 위한 사면의 외적조건 특성에 관한 수치해석적 연구)

  • Ji, Hyun-Woo;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.15-27
    • /
    • 2010
  • Geo-hazard shows a rapid increasing tendency with establishment of frequent great slopes in various construction sites, especially in the unfavorable topographic condition in which about 70% of the surface is covered by the mountainous area. An repeatedly taking place on the heavy rain season is accompanied by a large scale of rockfall, and causes great damage to an individual as well as a property. Even though lots of field studies and fundamental studies have been performed to reduce this hazard, however, an essential study on the mechanism of the rockfall should be limited to the conventional studies on the slope reinforcement and/or the rockfall risk analysis. In this study, the mechanism of rockfall depending on the morphologic characteristics of slope has been simulated numerically with the PFC2D, one of the discrete element programs. For analyzing its mechanism, the input parameters relating to the slope such as surface condition, gradient, number of benches, bench gradient, and the ratio of bench width to rockfall size were taken into consideration.

Deformation Behaviour of Metamorphic Tuff from Plate Loading Test

  • Lee, Young-Nam;Suh, Young-Ho;Kim, Dae-Young
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.87-100
    • /
    • 1997
  • This paper presents the results of plate loading test and discontinuum analysis, carried out to study the deformation behaviour and determine the deformation modulus of !rletamorphic andesitic tuff found at the site of a underground oil storage facility in Korea. In the plate loading test, the maximum pressure of 14MPa was applied to the bedrock by using a flat jack(1m in diameter) and the rock anchor system for the reaction against the applied pressure. The values of deformation modulus obtained from this test were compared with those of laboratory test, biaxial test and pressuremeter test. The deformation modulus from plate loading test was generally about half of the intact rock modulus, and the mass modulus of the bedrock at the test site may be affected by discontinuities and ranges between 25 and 350pa. Discontinuum analysis was also performed to simulate plate loading test and study the influence of discontinuities on the deformability of rock mass by simulating the presence of joints at the test area.

  • PDF

Review of the Study on Mechanical Properties of Rock Under the Polar Climate Condition (극지 암석의 역학적 특성 분석에 관한 연구 동향)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.241-251
    • /
    • 2010
  • The polar region is in the limelight for an academic worth as well as plenty of natural resources. The study on the polar region was reviewed for better understanding of the polar region and its rock properties. The antarctica has a windy and dry climate along with the lowest temperature on the earth. The thermal distribution according to depth in the area was reported: The freezing-thawing process was repeated in shallow depth, and the temperature falls down below zero under the specific depth. There is a great temperature difference between the atmosphere and rock. A research reported for the degree of weathering of the antarctic slope by using Schmidt hammer and Taffoni test. The rock specimens weathered by repeated freezing-thawing process were tested of the shore hardness and uniaxial compressive strength: The rock strength gradually decreased as the freezing-thawing process was repeated. The comprehensive mechanical properties of the polar region rocks and the relationship between the laboratory weathering test result and the real rock property change in the site remain as future research topics.

A Study on Hydro-mechanical Behaviors of Rock Joints using Rotary Shear Testing Apparatus (회전식 전단시험기를 이용한 암석절리의 수리-역학적 거동에 관한 연구)

  • 천대성;이희석;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.328-336
    • /
    • 1999
  • To characterize the hydro-mechanical behavior of a rock joint, a rotary shear testing apparatus was devised in this study. Shear stress was driven by twisting the end of a sample in the rotary shear testing apparatus. The test results show that the rotary shear test underestimates the peak shear strength of a rock joint. The torque is known as a function of the radial distance from the axis of rotation, resulting in the radial variation of the shear stress. Fluid flow through rock joints is mainly dependent on the Joint roughness, contact area, initial aperture. To examine the dependency, the relationship between the hydraulic and the mechanical apertures for shear-flow was established by measuring the initial aperture. It shows that the mechanical aperture and the hydraulic aperture increase linearly with the dilatancy. The difference between the hydraulic and mechanical apertures describes the deviation from the behavior predicted by the parallel plate model.

  • PDF