• Title/Summary/Keyword: Underground Area

Search Result 1,151, Processing Time 0.021 seconds

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Selection of Retaining Wall System for Underground Parking Lots Expansion of Apartments (거주중 공동주택의 지하주차장확대를 위한 흙막이공법 선정)

  • Ro, Young-Chang;Lee, Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • Rapidly increasing automobile supply rate according to improved economic level of life makes lack of parking space of apartments. Even though the initial design of parking space compiled with old regulations, it may not observe either new laws or requirement of inhabitants. Even if old apartments have no structural durability problem, outworn facilities and insufficient parking area may be a main reason for reconstruction. It causes waste of national resources and makes recycling issues. Additionally, irregularly parked cars make traffic obstruction to a fire engine and result in many fire accident victims. Parking problems of apartments are not only inconvenience but also serious safety issues. From these points of view, remodeling only for parking area expansion is necessary to avoid overall reconstruction of apartments. The purpose of this study is to suggest a retaining wall selection method for apartments underground parking lots expansion without evacuation of resident people. Effect factors to select retaining wall system are analyzed and weight values are calculated by applying AHP. One selection method of retaining wall is proposed by evaluating applicability and its sensitivity analysis is executed. This selection method is expected to help decision-making of retaining wall system selection.

A Study on the Development and Improvement of Simple Piped Water Supply System in Rural Area of Korea (농촌지역 간이상수도시설 개발 및 개선에 관한 연구)

  • Chung, Yong;Koo, Ja-Kon;Kim, Myung-Ho;Yun, Suk-Woo;Kim, In-Sook
    • Journal of agricultural medicine and community health
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 1988
  • It is very important to supply safe drinking water for rural area not only a prevention of entric diseases but also a promotion of health life. It is estimated that 6,981,000 rural inhabitants were covered by the simple piped water supply system at the end of 1987 in Korea. The programme for improvement of water supply system in rural villages was initiated by the government since 1967. But most of these systems have been operated carelessly by the hands of villagers who have no proper knowledge and experience. Since most of water sources were located nearby farmland, there might be a possibility that the sources could be contaminated by pesticides and fertilizers. For this reason, it is recommended to take underground water as a water source rather than surface water such as a pond or streamwater in rural areas. However, the system is supplied from the surface water, its water quality can be improved by using of simple sand filter and simple chlorinator inexpensively. On the basis of an on-site study, conducted during 1986-87, in San-Buk Village, Keum-Sa-Myon, Yeju-Gun, Kyong-Gi-Do, the new simple piped water supply system was designed by the Institute for Environmental Research, Yonsei University, and constructed by the villagers themselves in September 1987. This simple system which is protected by metal fences consists of three main parts, pump house, vertical sand filter and water tank. The pumped water from underground flows into the upper part of the sand filter, through the sand, and out the water tank which is connected to the bottom of vertical filter. And the simple plastic-bottle chlorinator was installed in the water tank for chlorination. The water quality was remarkably improved after completion of construction. The total bacterial count was not detected from the tap water in households distributed by this simple piped water supply system. The construction cost of this system which was connected 34 households in San-Buk Village, was 4,851,000 won (approximately 6,020 U.S. dollars : 1$=805.8 won) in 1987,77% of expenses was supported by the Community Development Foundation in Korea. This case study for simple piped water supply projects will be applicable to other programme for improvement of water supply system in rural areas of Korea, and other developing countries.

  • PDF

Wireless LAN-based Vehicle Location Estimation in GPS Shading Environment (GPS 음영 환경에서 무선랜 기반 차량 위치 추정 연구)

  • Lee, Donghun;Min, Kyungin;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.94-106
    • /
    • 2020
  • Recently, the radio navigation method utilizing the GPS(Global Positioning System) satellite information is widely used as the method to measure the position of objects. As GPS applications become wider and fields based on various positioning information emerge, new methods for achieving higher accuracy are required. In the case of autonomous vehicles, the INS(Inertial Navigation System) using the IMU(Inertial Measurement Unit), and the DR(Dead Reckoning) algorithm using the in-vehicle sensor, are used for the purpose of preventing degradation of accuracy of the GPS and to measure the position in the shadow area. However, these positioning methods have many elements of problems due not only to the existence of various shaded areas such as building areas that are continually enlarged, tunnels, underground parking lots and but also to the limitations of accumulation-based location estimation methods that increase in error over time. In this paper, an efficient positioning method in a large underground parking space using Fingerprint method is proposed by placing the AP(Access Points) and directional antennas in the form of four anchors using WLAN, a popular means of wireless communication, for positioning the vehicle in the GPS shadow area. The proposed method is proved to be able to produce unchanged positioning results even in an environment where parked vehicles are moved as time passes.

Slope stability analysis and landslide hazard assessment in tunnel portal area (터널 갱구지역 사면안정성 및 산사태 위험도 평가)

  • Jeong, Hae-Geun;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.387-400
    • /
    • 2013
  • In this study, the slope stability analysis and the landslide hazard assessment in tunnel portal slope were carried out. First, we selected highly vulnerable areas to slope failure using the slope stability analysis and analyzed the slope failure scale. According to analyses results, high vulnerable area to slope failure is located at 485~495 m above sea level. The slope is stable in a dry condition, while it becomes unstable in rainfall condition. The analysis results of slope failure scale show that the depth of slope failure is maximum 2.1 m and the length of slope failure is 18.6 m toward the dip direction of slope. Second, we developed a 3-D simulation program to analyze characteristics of runout behavior of debris flow. The developed program was applied to highly vulnerable areas to slope failure. The result of 3-D simulation shows that debris flow moves toward the central part of the valley with the movement direction of landslide from the upper part to the lower part of the slope. 3-D simulation shows that debris flow moves down to the bottom of mountain slope with a speed of 7.74 m/s and may make damage to the tunnel portal directly after 10 seconds from slope failure.

Mine Haulage System Design for Reopening of Yangyang Iron Mine using 3D Modelling (3차원 모델링을 이용한 재개광 양양철광의 운반시스템 설계)

  • Son, Youngjin;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.412-428
    • /
    • 2012
  • To achieve mine development, a large amount of data concerned with the geological structure and the ore body had to be investigated and collected through geological survey, drilling and geophysical explorations. In most previous cases, however, the data were usually analyzed two dimensionally and those results showed some limits because of their 2D presentation. Those 2D maps such as geological plane sections or longitudinal sections cause lots of difficulties in understanding the complex geological structure or the feature of ore body in a spatial way. In this study, research area was set on the abandoned Yangyang iron mine in Korea and the Sugaeng ore body within the mine was selected as the research target to design a mine haulage system for reopening. A 3D mine model of this area was tried to be constructed using a 3D modelling software, GEMS. An accurate 3D model including the ore body, the geological structure, the old underground mine drifts and the new mine drifts was constructed under the purpose of reopening of the abandoned iron mine. Especially, mine design for trackless haulage system was conducted. New inclines and drifts were planned and modelled 3 dimensionally considering the utilization of old drifts and shaft. In addition to the 3D modelling, geostatistical technique was adopted to generate a spatial distribution of the ore grade and the rock physical properties. 3D model would be able to contribute in solving problems such as evaluating ore reserves, planning the mine development and additional explorations and changing the development plans, etc.

Blasting Design for Large Shaft in Urban Area Considering Noise and Vibration -Singapore Transmission Cable Tunnel EW2- (소음 및 진동을 고려한 도심지 내 대단면 수직구 발파설계 사례 -싱가포르 Transmission Cable Tunnel EW2 공구-)

  • Kim, Julie;Lee, Hyo;Kim, Dave;Ko, Tae-Young;Lee, Simon
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • With increasing needs in power, Singapore is requiring stronger power transmission. Singapore Transmission Cable Tunnel is underground tunnel for transmission system installation such as 400 kV cable. This Transmission Cable Tunnel is 35 km long in total. The North-South Transmission Cable Tunnel is 18.5 km long and there is a total of three (3) contracts; NS1, NS2 and NS3 in respect of the design and construction. The East-West Transmission Cable Tunnel is 16.5 km long, and also there is a total of three (3) contracts; EW1, EW2 and EW3. Among of them, SK E&C has been awarded and operating contract EW2 and NS2. In scope of works, each contract has 3 to 4 shafts which connect aboveground and underground high volt cable and those shafts are used as TBM launching shafts during construction. Transmission Cable Tunnel is undercrossing middle of Singapore and most of shafts are located in urban area. Thus, optimal blasting design satisfying high blasting efficiency as well as blasting vibration limit of Singapore is highly required. Blasting design for large shaft of Singapore Transmission Cable Tunnel follows blasting vibration limits in Singapore and reflects our blasting engineering skills. With Singapore Transmission Cable Tunnel Contract EW2, it is expected that our excellent blasting engineering and performance skills can be delivered to the world.

Concentrations of Criteria Pollutants in Indoor and Ambient Air of Public Facilities in Taegu Area (대구지역 공중이용시설의 실내 $\cdot$ 외 공기 중 기준성오염물질의 농도)

  • 송희봉;민경섭;한개희;김종우;백성옥
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.429-439
    • /
    • 1996
  • A comprehensive air quality monitoring was carried out in this study to investigate the concentrations of criteria air pollutants in indoor and outdoor air of public facilities in Taegu area. Four different kinds of public facilities were seleced as sampling sites, which are underground stores, stations & terminals, general hospitals, and department stores. Each group of the public facilities was consisted of three different sampling sites. As a consequence, a total of 12 different sampling sites were surveyed throughout this study. Sampling was conducted simultaneously indoors, three times per day (in the morning, afternoon, and evening) and four times per year (spring, summer, fall, and winter) at each sampling site during the period of October 1994 to July 1995. A range of criteria pollutants were measured in order to obtain a broad profile of indoor and ambient air quality, including total suspended particles (TSP), carbon monoxide (CO), carbon dioxide ($CO_2$), formaldehyde (HCHO), sulfur dioxide ($SO_2$), and nitrogen dioxide ($NO_2$). In addition, temperature, relative humidity, and air current were measured on site together with those air pollutants. Results of this study indicated that the indoor levels of TSP, CO, $SO_2, and NO_2$ appeared to be generally higher in stations/terminals and underground stores than those in department stores and hospitals. However, HCHO and $CO_2$ were found to have higher levels in the department stores and hospitals than other places, indicating that the effects of indoor sources for these pollutants are significantly different from other combustion related pollutants such as TSP, CO, and $SO_2$. It was also found that there are marked seasonal and daily variations both in indoor and outdoor air quality. In general, combustion related pollutants such as CO, $SO_2$ and $NO_2$ showed a typical pattern of higher levels in winter than insummer, and also higher in the morning and/or in the evening than in the afternoon. However, the seasonal and daily patterns of HCHO appeared to be opposite to the combustion related pollutants, i.e., higher both in summer and in the afternoon, implying the effect of temperature on the volatilization from indoor sources of HCHO. Results of correlation analyses between indoor and outdoor air quality also indicated that the effects of outdoor sources on the indoor levels of TSP, $SO_2$, CO, and $NO_2$ and much significant, whilst no significant correlations between indoor and outdoor levels were found for HCHO and $CO_2$.

  • PDF

A study on effects of landscape design of road tunnel portal to interior lighting of tunnels (도로터널의 갱구부 경관설계가 터널 내부조명에 미치는 영향에 관한 연구)

  • Lee, Mi-Ae;Lee, Dong-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.497-504
    • /
    • 2013
  • This research uses numerical analysis to examine the tunnel portal landscape affecting the brightness level of interior lighting when designing lights for road tunnels through the L20 method. In order to extract the brightness recognition per form of a tunnel entrance and to evaluate the effects of the characteristics of the materials of facilities near a tunnel portal, brightness analysis was conducted by filming brightness on a video photometer called Hi-land Elf System, and a surface brightness photometer called LMK Mobile Advanced. Tunnels in Korea are mostly distributed in mountain areas; thus, the ratio occupied by the sky, which has the highest brightness within the angle of L20, is close to zero, while most of the ratio was occupied by brightness by the area near the tunnel entrance or road surface. However, for a tunnel portal retaing wall, which allows the width of a tunnel entrance to seem wider within the L20 angle, appeared to be have higher brightness compared to nearby areas or the surface, which is an element increasing the tunnel portal brightness within the tunnel, and the road facilities near the tunnel portal appeared to have an effect on the brightness as well. Thus, when designing tunnel lights based on brightness, the form of the tunnel entrance and the area width, material, and color of areas near the tunnel portal appeared to affect outside brightness and become an element affecting the establishment of the brightness level of the interior lights of tunnels. Consequently, reviewing such matters is a prerequisite when designing tunnel portal landscape.