• Title/Summary/Keyword: Underactuation

Search Result 8, Processing Time 0.021 seconds

Study on the Design of a Novel Adaptive Gripper (적응형 그리퍼 설계 연구)

  • Kim, Gi Sung;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.325-335
    • /
    • 2019
  • In this paper, a novel adaptive gripper with underactuation is presented, which can change its configuration to parallel or power grip mode according to object shapes. Differently from the commercial adaptive gripper by RobotiQ, the proposed gripper includes an actual parallelogram inside a five-bar mechanism, which allows the free selection of actuator locations and can reduce actuation torques effectively. The forward and inverse kinematics for two grip modes and statics analysis have been analyzed. From the comparative design, the proposed gripper has about 20% smaller size, 3.7% larger stroke, and 30.5% smaller average actuation torque than the commercial one.

Review on the Control Methods of Quadcopters (쿼드콥터 제어 방법 고찰)

  • Yoon, Jonghuyn;Lee, Seunghee;Park, Jong Hyeon;Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Recently, quadcopters have been popular as aerial drones. The structure of quadcopters is simpler than traditional helicopters and they are easy to construct and maneuver. Various hardware platforms for quadcopters have been developed. However, the controller design is not easy due to the requirement of 6-DOF flights using 4 rotors(control inputs)(under-actuated systems). In order to overcome the underactuation problem, various control methods - PID, LQR, $H_{\infty}$, SMC, backstepping control, and etc. - have been suggested for the control of quadcopters. In this paper, dynamic features and control methods of quadcopters are reviewed and evaluated. Future works are proposed for designing the advanced controllers of quadcopters.

Angular Speed Estimation and Two-Axis Attitude Control of a Spacecraft Using a Variable-Speed Control Moment Gyroscope (가변속 CMG를 장착한 위성의 각속도 추정 및 2축 자세제어)

  • Jin, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1104-1109
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has fewer than three actuators. Even though such spacecrafts are known as uncontrollable, restricted missions are possible with controlling two-axis attitude angles. A variable speed control moment gyroscope is considered as an actuator. It is a kind of momentum exchange device and it shows highly nonlinear dynamical properties. Speed commands are generated by kinematic equations represented by Euler angles. A control law, that is designed to make a spacecraft follow the speed commands, is derived by the backstepping method. Angular speeds are estimated from the attitude measurements. Several estimation methods have been compared.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Analysis of Attitude Control Characteristics for an Underactuated Spacecraft Using a Single-Gimbal Variable-Speed CMG (1축 가변속 CMG를 장착한 부족구동 위성의 자세제어 특성 분석)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.437-444
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has one single-gimbal variable-speed CMG. An underactuated spacecraft may not converge to arbitrary attitudes if its total angular momentum is not zero. To stabilize a spacecraft, the CMG has to align with the angular momentum in the inertial frame. Four different install configurations for the CMG have been considered and controllable angular momentums have been analyzed. Also, based on the backstepping method, stabilizing control laws have been presented and their properties have been compared.

Adaptive Gripper Mimicking Large Deforming Proleg of Hydraulic Skeleton Caterpillar (유체골격 애벌레의 다리조직 대변형을 모사한 적응형 그리퍼)

  • Jung, Gwang-Pil;Koh, Je-Sung;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, we present a gripping mechanism that is inspired by caterpillar's proleg. A caterpillar's proleg has planta that gives compliance to the proleg by greatly deforming its shape. In the bio-inspired gripper, the planta is implemented by flexure joints. The flexures buckle when end force and end moment is applied on the joint in opposite direction. Using this characteristic, the gripping structure is designed so that the flexure buckling can occur. Flexure buckling increases the region where gripping force is constant and this region leads to increasing in gripping range. At the same time, flexure buckling decouples all spines and therefore all spines can move differentially and independently. With this simple but effective mechanism, the bioinspire gripper can achieve adaptive gripping on rough and rugged surfaces. A prototype is built to demonstrate adaptive gripping on rough and rugged surfaces such as cement block, brick.

Fault Tolerant Attitude Control of a Spacecraft Using Two Wheels (두 개의 휠을 이용한 인공위성의 내고장 자세제어)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • This paper considers a fault tolerant control problem for a spacecraft using wheels which are momentum exchanging devices. The control of a satellite with only two healthy wheels has been studied and its result has been presented. Two different configurations have been considered. When the yaw rate cannot be controlled directly by any control input, the desired yaw rate can be obtained by using the roll rate as a pseudo control. As a result, all three angular speeds have been stabilized, and two attitude angles including pitch and yaw have been controlled to converge to the desired values.

Underactuated Finger Mechanism for Body-Powered Partial Prosthesis (신체 힘에 의해 동작되는 부분 의수를 위한 부족구동 손가락 메커니즘)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.193-204
    • /
    • 2016
  • This paper presents an anthropomorphic finger prosthesis for amputees whose proximal phalanx is mutilated. The finger prosthesis to be proposed is able to make the amputees to perform the natural motion such as flexion/extension as well as self-adaptive grasping motion as if normal human finger does. The mechanism of finger prosthesis with three degrees-of-freedom (DOFs) consists of two five-bar and one four-bar linkages. Two passive components composed of torsional spring and mechanical stopper and only one active joint are employed in order to realize an underactuation. Each passive component is installed into the five-bar linkage. In order to activate the finger prosthesis, it is required for the user to flex and extend the remaining proximal phalanx on the metacarpophalangeal (MCP) joint, not an electric motor. Thus the finger prosthesis conducts not only the natural motion according to his/her intention but also the grasping motion through the deformation of springs by the object for human finger-like behavior. In order to reveal the operation principle of the proposed mechanism, kinematic analysis is performed for the linkage design. Finally both simulations and experiments are conducted in order to reveal the design feasibility of the proposed finger mechanism.