• Title/Summary/Keyword: Underactuated System

Search Result 38, Processing Time 0.027 seconds

Control of Underactuated Unstable Mechanical System Using Dynamic Scaling (다이나믹 스케일링을 이용한 과소 작동 불안정 기계 시스템의 제어)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1777-1778
    • /
    • 2008
  • 이 논문에서는 자유도보다 엑츄에이터가 부족한 과소 작동 기계 시스템의 지수적 안정을 보장하는 다이나믹 제어기법을 제시한다. 이 시스템의 원점에 대한 자코비안 선형화는 제어불능이므로 기존의 시불변 상태궤환 기법으로 안정화가 불가능하다는 특징을 가지고 있다. 이 논문에서는 추가 다이나믹스를 이용한 다이나믹 스케일링 기법과 수정된 역진 기법을 사용하여 제어목적을 달성한다.

  • PDF

Development of Overload Prevention Algorithm for the Crane Safety (크레인 안전을 위한 과부하 방지 알고리즘 개발)

  • Lee, Sang Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.11-19
    • /
    • 2012
  • Crane systems have been widely used for transportation in building sites, ports, nuclear wastehandling operation and so on. As a typical underactuated system, an overhead crane has such merits as high flexibility and less energy consumption. And it's getting more types of cranes, universally applicable algorithms should be developed. That is the design and development of scalable algorithms are required. Developed algorithms can be used for the controller and crane overload protection that meets the requirements of the algorithm are presented. These algorithms force the state to warn the operator and stops the operation of equipment. In this paper, crane overload conditions that can cause damage to alert the operator, and to limit the operation of equipment overload protection algorithm is presented.

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

Dynamic Characteristics and Control of Two-Link Arm with Free Joint (자유관절을 가진 2링크 암의 동특성과 제어)

  • 유기호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.216-223
    • /
    • 2000
  • A robot arm with free joints has some advantages over conventional ones. A light weight and low power consumed arm can be made by a reduction of the number of joint actuators. And this arm can easily overcomes actuator failure due to unexpected accident. In general such underactuated arm does not have controllability because of the lack of joint actuators. The two-link arm with a free joint introduced in this paper is also uncontrollable in the sense of linear system theory. However, the linearized system sometimes can not represent the inherent dynamic behavior of the nonlinear system. In this paper the dynamic characteristics of the two-link arm with a free joint in view of global motion including damping and friction effect of the joints is investigated. In the case of considering only the damping effect, the controllable goal positions are confined to a specific trajectories. But in the case of considering the friction effect, the system can be controlled to arbitrary positions using the friction of the free joint as a holding brake. Also numerical example of position control is presented.

  • PDF

Trajectory Generation and Dynamic Control of Planar Biped Robots With Curved Soles

  • Yeon Je-Sung;Kwon O-Hung;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2006
  • This paper proposes a locomotion pattern and a control method for biped robots with curved soles. First, since the contact point of a supporting leg may arbitrarily move back and forth on the ground, we derived the desired trajectory from a model called the Moving. Inverted Pendulum Model (MIPM) where the Zero Moment Point (ZMP) exists at the supporting point and can be moved intentionally. Secondly, a biped robot with curved soles is an under-actuated system since the supporting point contacting with a point on the ground has no actuator during the single supporting phase. Therefore, this paper proposes a computed-torque control for this under-actuated system using decoupled dynamic equations. A series of computer simulations with a 7-DOF biped robot with curved soles shows that the proposed walking pattern and control method are effective and allow the biped robot to walk fast and stably, and move more like human beings. Also, it is shown that the curved sole shape has superior energy consumption compared to flat soles, and greater efficiency in ascending and descending the stairs.

Stiffness Analysis of Spring Mechanism for Semi-Automatic Gripper Motion of Tendon-Driven Remote Manipulator (와이어 구동방식 원격조작기용 그리퍼의 반자동 파지 및 해제 동작을 위한 스프링 강성 분석)

  • Yu, Seung-Nam;Lee, Jong-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1405-1411
    • /
    • 2012
  • Remote handling manipulators are widely used for performing hazardous tasks, and it is essential to ensure the reliable performance of such systems. Toward this end, tendon-driven mechanisms are adopted in such systems to reduce the weight of the distal parts of the manipulator while maintaining the handling performance. In this study, several approaches for the design of a gripper system for a tendon-driven remote handling system are introduced. Basically, this gripper has an underactuated spring mechanism that is combined with a slave manipulator triggered by a master operator. Based on the requirements under the specified tendon-driven mechanism, the connecting position of the spring system on the gripper mechanism and kinematic influence coefficient (KIC) analysis are performed. As a result, a suitable combination of components for the proper design of the target system is presented and verified.

Design of Adaptive Neural Tracking Controller for Pod Propulsion Unmanned Vessel Subject to Unknown Dynamics

  • Mu, Dong-Dong;Wang, Guo-Feng;Fan, Yun-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2365-2377
    • /
    • 2017
  • This paper addresses two interrelated problems concerning the tracking control of pod propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping technique, neural network approximation and adaptive method. Meanwhile, unlike some existing tracking methods for surface vessel whose control algorithms suffer from "explosion of complexity", a novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is proven that all error signals in the system are uniformly ultimately bounded. The advantages of the paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the neural shunting model is used to solve the problem of "explosion of complexity", and this is a combination of knowledge in the field of biology and engineering; third, the developed controller is able to capture the uncertainties without the exact information of hydrodynamic damping structure and the sea disturbances. Numerical examples have been given to illustrate the performance and effectiveness of the proposed scheme.

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.