• Title/Summary/Keyword: Under-ride

Search Result 85, Processing Time 0.027 seconds

Mapping vertical bridge deformations to track geometry for high-speed railway

  • Gou, Hongye;Ran, Zhiwen;Yang, Longcheng;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.467-478
    • /
    • 2019
  • Running safety and ride comfort of high speed railway largely depend on the track geometry that is dependent on the bridge deformation. This study presents a theoretical study on mapping the bridge vertical deformations to the change of track geometry. Analytical formulae are derived through the theoretical analysis to quantify the track geometry change, and validated against the finite element analysis and experimental data. Based on the theoretical formulae, parametric studies are conducted to evaluate the effects of key parameters on the track geometry of a high speed railway. The results show that the derived formulae provide reasonable prediction of the track geometry change under various bridge vertical deformations. The rail deflection increases with the magnitude of bridge pier settlement and vertical girder fault. Increasing the stiffness of the fasteners or mortar layer tends to cause a steep rail deformation curve, which is undesired for the running safety and ride comfort of high-speed railway.

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance

  • Han, Daesu;Park, Yonggyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.246-247
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. Combination of these two control algorithms depending on the operating requirements and depth of grid unbalance presents most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system. The proposed control algorithms are verified through transient response in the simulation.

  • PDF

Minimization of Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Unbalanced Grid Condition

  • Park, Yonggyun;Suh, Yongsug;Go, Yuran
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.273-274
    • /
    • 2012
  • This paper investigates control algorithms for a doubly fed induction generator(DFIG) with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Two different control algorithms to compensate for unbalanced conditions are proposed. Evaluation factors of control algorithm are fault ride-through(FRT) capability, efficiency, harmonic distortions and torque pulsation. Zero regulated negative sequence stator current control algorithm has the most effective performance concerning FRT capability and efficiency. Ripple-free control algorithm nullifies oscillation component of active power and reactive power. Ripple-free control algorithm shows the least harmonic distortions and torque pulsation. Combination of zero regulated negative sequence stator current and ripple-free control algorithm control algorithm depending on the operating requirements and depth of grid unbalance presents the most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system.

  • PDF

Cumulative deformation of high-speed railway bridge pier under repeated earthquakes

  • Gou, Hongye;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2019
  • Residual deformation of high-speed railway bridge piers is cumulative under repeated earthquakes, and influences the safety and ride comfort of high-speed trains. This paper investigates the effects of the peak ground acceleration, longitudinal reinforcement ratio, and axial compression ratio on the cumulative deformation through finite element analysis. A simply-supported beam bridge pier model is established using nonlinear beam-column elements in OpenSees, and validated against a shaking table test. Repeated earthquakes were input in the model. The results show that the cumulative deformation of the bridge piers under repeated earthquakes increases with the peak ground acceleration and the axial compression ratio, and decreases with the longitudinal reinforcement ratio.

Joint Width Design for Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장의 줄눈 폭 설계)

  • Kim, Dong-Ho;Kil, Yong-Su;Kim, Jin-Woung;Yun, Kyeong-Ku
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • In post-tensioned concrete pavement(PTCP), one of the most important design variables is the initial joint width, in addition to the tensioning spacing. The joint width between PTCP slabs directly affects noise and ride quality. If the joint width is too wide, noise increases and ride quality decreases. If the initial joint width is too narrow, on the other hand, under high temperature, PTCP slabs can blow up, or failures near the joint can occur due to excessive compressive stresses. This study was conducted to determine the optimal initial joint width of PTCP and to investigate the joint width behavior under temperature changes. The experiments were performed using one-year-old PTCP slabs. The concrete temperatures were measured using the temperature measurement sensors installed at various depths. The joint widths were measured using vernier-calipers at different times of a day and the relationship between the joint width and temperature was analyzed. From this study, the design methodology to determine the optimal initial joint width of PTCP could be proposed.

The Use of Electromyography for Fatigue Evaluation of Automotive Seats (자동차 시트의 피로도 평가를 위한 근전도 평가를 위한 근전도 측정기의 사용)

  • 이영신;이의신;박세진
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.10-16
    • /
    • 1997
  • The ride comfort is one of the most important indices which decide the quality of automotive seats. A subjective evaluation is the general method for comfort evaluation of automotive seats. But the subjective evaluation assess the individual sensibility using questionnaire. Therefore, a need to develop methodologies to obtain objective measurements of the fatigue evaluation is evident. In an effort to monitor muscle activity during driving electromyography (EMG) was employed. In an experimental setting the subjective evaluation was conducted using questionnaire under the static conditions (8 subjects) and the fatigue was induced in muscles using EMG under the dynamic conditions (2 drivers). The resultant EMG signals were then sampled for three different muscles. In test involving 2 subjects of similar size and build, utilizing four different automotive seats, test results support the use of EMG to quantify muscular fatigue as a viable means of objective evaluation for the different automotive seats.

  • PDF

A Study on Durability of Under Bar at Car through Structural and Fatigue Analysis (자동차 언더바의 구조 및 피로해석을 통한 내구성 연구)

  • Han, Mu Shick;JO, Jae-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.44-50
    • /
    • 2015
  • This study investigated the durability of the under bar of a car through structural and fatigue analysis. Model 1 had the lowest value among three kinds of models. In the case of the maximum equivalent stress and displacement at structural analysis, model 1 showed the highest durability. Also, models 3 and 2 showed structural durability in order of this value. In the case of fatigue analysis, the maximum fatigue lives of the three models were equal to $2{\times}10^7$cycles. However, model 1 showed the highest value among the three models, as the minimum fatigue life of model 1 becames 92.56 cycles. Also models 3 and 2 showed fatigue durability in order of this value. The maximum possibility of fatigue damage for models1,2,and 3 became 30%. If the results of this study are applied to change the design shape of the under bar of cars, the ride comfort for automobile passengers and car durability can be improved.

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance (계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략)

  • Han, Dae-Su;Suh, Yong-Sug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.