• Title/Summary/Keyword: Under-Water Treatment

Search Result 1,623, Processing Time 0.027 seconds

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

Removal of Residual Antibiotics-Ciprofloxacin, Trimethoprim and Enrofloxacin-from Water by Ozone Oxidation (수중 미량 잔류항생물질 Ciprofloxacin, Trimethoprim, Enrofloxacin의 오존산화제거)

  • Han, Min-Su;Choi, Yeon-Woo;Song, Jun-Hyuck;Wang, Chang-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.149-156
    • /
    • 2018
  • Oxidation of Ciprofloxacin, Trimethoprim, and Enrofloxacin by ozone was experimentally investigated to observe the effects of background water quality (such as ultrapure water, humic acid, and biologically treated wastewater) and water temperature on the removal rate of these antibiotics, and, thereby, to be able to provide design information when the ozone treatment process is adopted. Initial concentrations of the antibiotics spiked to $10{\mu}g/L$, and the ozone dose was 1, 2, 3, 5, and 8 mg/L. While the removal rate of Ciprofloxacin under ultrapure water background by ozone oxidation was over 99%, the removal rate under humic acid and biologically treated wastewater background was markedly lower, in the range of 49.3% ~ 99% and 19.8 % ~ 99 %, respectively. When water temperature is decreased from $20^{\circ}C$ to $4^{\circ}C$, the removal rate is reduced from the range of 19.8% ~ 99 % to the range of 7.5 % ~ 99 % under a biologically treated wastewater background. The effects of background and temperature on the removal rate of Trimethoprim and Enrofloxacin were similar to that of Ciprofloxacin, but the degree was different. Therefore, it is concluded that the background of water to be treated, as well as water temperature, should be taken into consideration when the design factor, such as ozone dose, is determined, so that the treatment objective of the ozone treatment process can be most effectively met.

Removal of Residual Antibiotics - Erythromycin, Sulfamethazine and Sulfathiazole - from water by Ozone Oxidation (수중 미량 잔류항생물질 Erythromycin, Sulfamethazine, Sulfathiazole의 오존산화제거)

  • Choi, Yeon-Woo;Han, Min-Su;Song, Jun-Hyuck;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.347-356
    • /
    • 2017
  • Oxidation of erythromycin, sulfamethazine and sulfathiazole by ozone was experimentally investigated to see the effects of background water quality such as ultrapure water, humic acid and biologically treated wastewater and water temperature on the removal rate, consequently to provide design information when the ozone treatment process is adopted. Initial concentration of the antibiotics was spiked to $10{\mu}g/l$ and ozone dose was 1, 2, 3, 5, 8 mg/l. While the removal rate of erythromycin under ultrapure water background by ozone oxidation was over 99%, that under humic acid and biologically treated wastewater background was markedly reduced to the range of 59.8%~99% and 17.0%~99%, respectively. When water temperature is decreased from $20^{\circ}C$ to $4^{\circ}C$, the removal rate is reduced from the range of 17.0%~99% to the range of 9.4%~97.4% under biologically treated wastewater background. The effects of background and temperature on the removal rate of sulfamethazine and sulfathiazole were similar to erythromycin, but the degree was different. Therefore, it is concluded that the background of water to be treated as well as water temperature should be taken into consideration when the design factor such as ozone dose is determined to meet the treatment objective in the ozone treatment process.

Effects of Elevated CO2 Concentration and Temperature on Physiological Characters of Liriodendron tulipifera (CO2농도 및 온도 상승이 백합나무의 생리적 특성에 미치는 영향)

  • Lee, Ha-Soo;Lee, Solji;Lee, Jae-Cheon;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study aimed to investigate the growth and physiological characters of Liriodendron tulipifera seedlings in responses to two different levels of elevated air temperature and $CO_2$ concentration. The seedlings were grown in environment-controlled growth chambers with two combinations of air temperature and $CO_2$ conditions: (1) $22^{\circ}C$ + ambient $CO_2$ $380{\mu}mol\;mol^{-1}$ and (2) $27^{\circ}C$ + $770{\mu}mol\;mol^{-1}$. Physiological characters such as growth, photosynthesis, and water use efficiency, were monitored for 85 days. The seedlings under the elevated treatment showed a greater amount of growth in tree height, compared with those under the control. Regarding the characteristics of assimilatory organs, the elevated treatment resulted in a greater amount of total leaf area, leaf unfolding, and dry weight per leaf area. No significant differences were found in photosynthesis capacity between the two treatments. The increase in water use efficiency with increased intercellular $CO_2$ partial pressure appeared overall lower in the seedling under the elevated treatment, compared with those under the control. The total leaf area of the seedlings under the elevated treatment was larger than that under the control, indicating a higher amount of photosynthesis. In addition, an increase of root growth was noted under the elevated treatment. A resistance mechanism of water stress may be attributed to a higher amount of organ growth as well as the tree height under the elevated treatment than the control.

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

A Study on the Removal of Phosphorus in the Lake (호수내의 인 제거에 관한 연구)

  • Kim, Kyoungtae;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1998
  • The feasibility of usage of sludge from water treatment plant and chalk from schools and institutes was investigated to remove the phosphorus in the lakes which induce the eutrophication every year. In this study phosphorus removal efficiencies of sludge and chalk were investigated by changing various factors. Higher phosphorus removal efficiency using larger particle size of chalk was observed which means that the surface area is not an important factor in removing phosphorus in aqueous phase. The proper shaking time and temperature were 2 hours and $25^{\circ}C$, respectively. The removal efficiency using sludge from water treatment plant was almost 100%, which is similar to those of CaO and $Ca(OH)_2$. It means that sludge can be reused in removing phosphorus. It was also found that chalk was better in removing phosphorus under alkaline condition and sludge was better under acidic condition. About 75% phosphorus removal efficiency was observed using sludge from the water sample in Lake Sihwa.

  • PDF

Optimal Solidification Conditions for Suppression of Heavy Metal Elution from Water Treatment Sludge (정수슬러지로부터 중금속 용출 억제를 위한 최적 고화조건)

  • Lee, Byung-Dae;Kim, Yeoung-Chan;Lee, Jin-Shik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.379-384
    • /
    • 2005
  • In general, water treatment sludge (WTS) had high concentration of heavy metal, thus it made the reuse or recycling of WTS difficult. The optimal solidification conditions for maximum suppression of heavy metal elution from WTS were decided in this study. Under the optimal solidification conditions (i.e., temperature, $320^{\circ}C;$ ratio of WTS and MgO, 9:1; solidification time, 1hr), all of heavy metal including aluminum were not detected. Therefore there are no problems for reuse or recycling of WTS which was solidified under the optimal solidification conditions found in the study.

An Experimental Study on the Deteriorative Resistance of Epoxy Resin Waterproofing Phase under Advanced Water and Wastewater Treatment (고도수처리 환경에 노출된 에폭시 수지계 방수/방식재의 침식 저항성 평가에 관한 실험적 연구)

  • 오상근;장성주;김영삼;양승도
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.59-62
    • /
    • 2002
  • Recently, advanced system for water and wastewater treatment is introduced and operated because of water pollution and etc. One of this System makes use of O3(Ozone) for water and wastewater treatment. In airtight concrete structure, waterproofing phase as well as water are affected by strong oxidative O3 in the long-term. For this reason, material stability against O3 is examined. Consequently, the purpose of this study is to find out material stability an object of epoxy resin by way of accelerated O3 testing.

  • PDF

The effect of supercritical water treatment on the chemical variations of lignin (목질바이오매스의 초임계수 처리에 의한 리그닌의 화학적 변환)

  • Lee, Soo-Min;Lee, Oh-Kyu;Choi, Seok-Hwan;Choi, Joon-Weon;Choi, Don-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.206-209
    • /
    • 2008
  • The modified supercritical water treatment method is adopted for hydrolysis of wood powder, Populus alba$\times$glandulosa. This modified method is containing 0.05% HCl or $HNO_3$ as acid catalyst. The supercritical water treatment(SCW) was performed for 1 min. with $350^{\circ}C$, $380^{\circ}C$, $400^{\circ}C$ and $425^{\circ}C$, respectively, under 230 $\pm$ 10 atm using continuous flow system. When acid was added to powder prepared for SCW treatment, the yields of monomeric sugars were significantly increased. The lignin remained after supercritical treatment was applied to gel permeation chromatography(GPC) for molecular weight distribution analysis. Compared to the lignin produced from SCW treatment without acid catalyst, the average molecular weight of lignin compounds treated with acid was clearly decreased. Particularly, Mn/Mw ratio is decreased. This result shows supercritical water treatment of wood powder can change the molecular weight of lignin to small size. However, it is necessary to be further studied for exactly characterizing the lignin produced from supercritical water treatment.

  • PDF

Competition for Water in Two Populations of Impatiens pallida (Balsaminaceae) from Contrasting Water Environments (수분환경이 다른 서식지에서 자란 Impatiens pallida 의 두 개체군간 수분에 대한 경쟁)

  • Yang, Hyo-Sik;James B. McGraw
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.165-178
    • /
    • 1996
  • We investigated the role of competition in adaptation to varying water availability levels for two ecotypically-differentiated populations of Impatiens pallida found naturally in low- vs. high-water environments. In a greenhouse experiment, seedlings were grown in pure cultures at two densities (n=1 and 2 plants per pot) and in mixed cultures (n=2) under low-, medium- and high-water treatments. The two populations were shown to be genetically distinct across the range of environmental conditions in the greenhouse experiment, confirming previous findings. The two populations had similar morphological responses to density and water availability in pure cultures and mixtures, but the population from the high-water environment showed a greater growth response to high water availability than did the population from the low-water environment and the difference in growth between the two populations decreased from the high-water to low-water treatment. Relative competitive ability of two populations were compared under three different water treatments and two densities. Differential response to watering treatment and density were not reflected in a difference in relative competitive ability. Relative yield totals were significantly greater than 1 overall. The niche differentiation suggested by RYTs>1 may be responsible for the lack of differential competitive effects observed for populations in the three vatering treatments.

  • PDF