• Title/Summary/Keyword: Under-Sampling

Search Result 1,098, Processing Time 0.031 seconds

Design and Implementation of Multistage Database for Shipboard by using Data Sampling (데이터 샘플링을 이용한 선박용 다단 데이터베이스 설계 및 구현)

  • Seo, Jeong-Min;Hwang, Hun-Gyu;Lee, Seong-Dae;Lee, Jang-Se;Jang, Kil-Woong;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1111-1118
    • /
    • 2011
  • Several data from equipments on shipboard have been used for the safe navigation of ships. Due to the varieties of data, however, there may be difficulties to manage those data separately. Therefore, it can be effective to develop database for the integrated management of ship data. However, the database may become full soon because huge amount of data are saved continuously. To cope with this problem, this paper proposes multistage database which can always keep the database under full by means of sampling mechanism. To verify the functionality of the methodology, a prototype system has been implemented and tested.

Evaluation of energy correction algorithm for signals of PET in heavy-ion cancer therapy device

  • Niu, Xiaoyang;Yan, Junwei;Wang, Xiaohui;Yang, Haibo;Ke, Lingyun;Chen, Jinda;Du, Chengming;Zhang, Xiuling;Zhao, Chengxin;Kong, Jie;Su, Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • In order to solve the contradiction between requirements of high sampling rate for acquiring accurate energy information of pulses and large amount of data to be processed timely, the method with an algorithm to correct errors caused by reducing the sampling rate is normally used in front-end read-out system, which is conductive to extract accurate energy information from digitized waveform of pulse. The functions and effects of algorithms, which mainly include polynomial fitting with different fitting times, double exponential function fitting under different sampling modes, and integral area algorithm, are analyzed and evaluated, and some meaningful results is presented in this paper. The algorithm described in the paper has been used preliminarily in a prototype system of Positron Emission Tomography (PET) for heavy-ion cancer therapy facility.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

Fairing Design Optimization of Missile Hanger for Drag Reduction (유도탄 행거 항력 저감을 위한 페어링 형상 최적화)

  • Jeong, Sora
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.527-535
    • /
    • 2019
  • Hanger in a rail-launched missile protrudes in general and causes to increase significant drag force. One method to avoid the significant increase of drag force is to apply fairings on the hanger. In this paper, sloping shaped fairing parameters of height, width, and length are optimized to minimize the drag force under subsonic speed region by examining three configurations of fairings : front-fairing only, rear-faring only, and the both front and rear fairing. We use Latin Hypercube Sampling method to determine the experimental points, and computational fluid dynamics with incompressible RANS solver was applied to acquire the data at sampling points. Then, we construct a meta model by kriging method. We find the best choice among three configurations examined : both front and rear fairing reduce the drag force by 63 % without the constraint of fairing mass, and front fairing reduced the drag force by 52 % with the constraint of hanger mass.

A Study on the Optimal Sampling for Predicting Failure Rate of One-Shot Weapon Systems (원샷 무기체계 고장률 예측을 위한 최적 샘플링 방안 연구)

  • Ahn, Joo Han;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.366-372
    • /
    • 2020
  • The Army's rocket missile is a one-shot weapon system, which is produced and used for only one mission, and requires high reliability. While reliability analysis with failure data can result in underestimation of the life distribution, reliability analysis with all the non-failure data can result in overestimation of the life distribution. Under or overestimation of the life distribution can lead to cost increase by early disposal or complete observation of all rocket missiles. In order to overcome this problem, the Army suggests the guideline of the number of samples from non-failure data for reliability analysis with failure data. However, the currently used sampling method can generate errors for predicting the failure rate. To solve this problem, this study proposes a new sampling procedure for predicting a future failure rate using non-failure data. The comparison test between the currently used sampling method and the proposed sampling method is conducted and the result shows that the proposed sampling method can predict the future failure rate more accurately.

Change of MTF for Sampling Interval in Digital Detector (디지털 검출기에서 샘플링 간격에 따른 MTF의 변화)

  • Cho, Hyungwook;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.225-230
    • /
    • 2014
  • Assessments of medical image was improved in accordance with development of medical imaging systems. One of them is edge method to determining MTF(Modulation Transfer Function) based on the Fujita method. Fujita was reduced sampling interval used slightly angulated slit to the direction of pixel array and composited finely sampled LSF to determine presampling MTF. In this study, we investigate the effect of sampling interval on the MTF under a digital imaging system by changing wire angle. The wire method was equivalent to the slit method except signal appearance. A Simens's MAMMOMAT Inspiration with $0.085{\times}0.085mm^2$ pixel size made by amorphous selenium was used and 96% accuracy on MTF in twice sampling interval compared with Fujita was obtained. However, three times of sampling interval showed 93% accuracy on 50% of MTF and 85% accuracy on 10% of MTF.

The Design of 1.2V $3^{rd}$ Order 4bit Sigma Delta Modulator with Improved Operating Time of High Speed DWA (고속 DWA의 동작시간을 개선한 1.2V $3^{rd}$ 4bit 시그마 델타 변조기 설계)

  • Yi, Soon-Jai;Kim, Sun-Hong;Cho, Sung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1081-1086
    • /
    • 2008
  • This paper presents the $3^{rd}$ 4bit sigma delta modulator with the block and timing diagrams of DWA(Data Weighted Averaging) to optimize a operating time. In the modulator, the proposed DWA structure has a stable operation and timing margin so as to remove three latches and another clock. Because the modulator with proposed DWA structure improve timing margin about 23%. It can increase sampling frequency up to 244MHz. Through the MATLAB modeling, the optimized coefficients are obtained to design the modulator. The fully differential SC integrators, DAC, switch, quantizer, and DWA are designed by considering the nonideal characteristics. The designed $3^{rd}$ order 4bit modulator has a power consumption of 40mW and SNR(signal to noise ratio) of 77.2dB under 1.2V supply and 64MHz sampling frequency.

Three Stage Estimation for the Mean of a One-Parameter Exponential Family

  • M. AlMahmeed;A. Al-Hessainan;Son, M.S.;H. I. Hamdy
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.539-557
    • /
    • 1998
  • This article is concerned with the problem of estimating the mean of a one-parameter exponential family through sequential sampling in three stages under quadratic error loss. This more general framework differs from those considered by Hall (1981) and others. The differences are : (i) the estimator and the final stage sample size are dependent; and (ii) second order approximation of a continuously differentiable function of the final stage sample size permits evaluation of the asymptotic regret through higher order moments. In particular, the asymptotic regret can be expressed as a function of both the skewness $\rho$ and the kurtosis $\beta$ of the underlying distribution. The conditions on $\rho$ and $\beta$ for which negative regret is expected are discussed. Further results concerning the stopping variable N are also presented. We also supplement our theoretical findings wish simulation results to provide a feel for the triple sampling procedure presented in this study.

  • PDF

THE EXTENSION OF THREE-WAY BALANCED MULTI-LEVEL ROTATION SAMPLING DESIGNS

  • Kim, K.W.;Park, Y.S.;Lee, D.H.
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.343-353
    • /
    • 2006
  • The two-way balanced one-level rotation design, $r_1^m-r_2^{m-1}$, and the three-way balanced multi-level rotation design, $r_1^m(\iota)-r_1^{m-1}$, were discussed (Park et al., 2001, 2003). Although these rotation designs enjoy balancing properties, they have a restriction of $r_2=c{\cdot}r_1$ (c should be a integer value) which interferes with applying these designs freely to various situations. To overcome this difficulty, we extend the $r_1^m(\iota)-r_1^{m-1}$ design to new one under the most general rotation system. The new multi-level rotation design also satisfies tree-way balancing which is done on interview time, rotation group and recall time. We present the rule and rotation algorithm which guarantee the three-way balancing. In particular, we specify the necessary condition for the extended three-way balanced multi-level rotation sampling design.

Study on hybrid sensing matrix for compressive sensing of images (영상 압축 센싱을 위한 하이브리드 센싱 행렬 연구)

  • Phan, Minh Van;Dinh, Khanh Quoc;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.230-231
    • /
    • 2014
  • Compressive sensing is a new sampling technique, which allows to sample a signal under the Nyquist-Shannon sampling rate. For block-based compressive sensing, a hybrid sensing matrix which contains low-frequency patterns in addition to the random Gaussian numbers is good for exploiting typical property of natural images. By noting that MH-BCS-SPL is well known for its good recovery performance, this paper investigates effect of the hybrid sensing matrix on MH-BCS-SPL in the sense of how large portion of low-frequency patterns can provide performance improvement.

  • PDF