• Title/Summary/Keyword: Undegradable protein

Search Result 45, Processing Time 0.019 seconds

The Nutritive Value of Rice Straw in Relation to Variety, Urea Treatment, Location of Growth and Season, and its Prediction from in Sacco Degradability

  • Soebarinoto, Soebarinoto;Chuzaemi, Siti;van Bruchem, Jaap;Hartutik, Hartutik;Mashudi, Mashudi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 1997
  • Ten rice varieties were planted at two locations (lowland and highland), during the wet and dry seasons of different years. In vivo digestibility and voluntary intake of the straw, were determined in groups of fat-tail sheep, supplemented with $18g{\cdot}kg^{-0.75}$ concentrate DM, containing ~20% crude protein. Voluntary intake of digestible straw organic matter (DOMI) consistently varied from 15.2 to $20.9g{\cdot}kg^{-0.75}$ between straw varieties, averaged over locations, years and seasons, despite considerable variation between individual batches. This variation in the nutritive value of the straw was independent of straw and grain yield, so it would seem that there is scope for selection of rice varieties with straw of higher nutritive value. The variation in DOMI of straw among location of growth, year and season, was of a magnitude similar to the improvement brought about by urea-ammoniation. The in sacco degradation characteristics and digestibility of rice straw residues were superior to those of the offered straw. This can be attributed to a preference for rice straw leaves relative to stems. Averaged over location of growth, year and season, characteristics of in sacco degradation, i.e. the rate of fermentative degradation and the truly undegradable fraction, emerged as accurate predictors of the nutritive value of rice straw.

Milk Production and Income over Feed Costs in Dairy Cows Fed Medium-roasted Soybean Meal and Corn Dried Distiller's Grains with Solubles

  • Thanh, Lam Phuoc;Suksombat, Wisitiporn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.519-529
    • /
    • 2015
  • The aims of this study were to determine the effects of feeding medium-roasted soybean meal (SBM) and corn dried distiller's grains with solubles (CDDGS) in dairy cows on milk production and income over feed costs. A randomized complete block design experiment was conducted with 24 crossbred multiparous Holstein Friesian dairy cows in early- and mid-lactation. Four dietary treatments were as follows: basal diet without feed substitute (Control), 7.17% dry matter (DM) roasted SBM replaced for concentrate (R-SBM), 11.50% DM CDDGS replaced for concentrate (DDGS), and 3.58% DM roasted SBM plus 5.75% DM CDDGS replaced for concentrate (SB-DG). The roasted SBM was produced using a medium-heated treatment at $100^{\circ}C$ for 180 min. Dry matter intake was not affected by feeding high rumen undegradable protein (RUP) sources, but the replacement of roasted SBM and CDDGS for concentrate significantly improved (p<0.001) RUP intake (0.90, 0.86, and 0.88 kg/d corresponding to R-SBM, DDGS, and SB-DG) compared to the control (0.61 kg/d). Feeding roasted SBM and CDDGS alone or in combination had no significant effect on milk composition of dairy cows (p>0.05), whereas milk yield was significantly increased by 3.08 kg/d in the SB-DG group relative to the control group (p<0.01). Net income was meaningfully increased (p<0.05) from 4th week post feeding, the SB-DG group reached the greatest net income ($3.48/head/d) while the control group had the lowest value ($2.60/head/d). In conclusion, the use of CDDGS alone or in combination with medium-roasted SBM as substitute for concentrate in lactating dairy cattle diet led to improved milk production and net income over feed costs without affecting total dry matter intake and milk composition, while feeding medium-roasted SBM seemed to show intermediate values in almost parameters.

Corn stover usage and farm profit for sustainable dairy farming in China

  • He, Yuan;Cone, John W.;Hendriks, Wouter H.;Dijkstra, Jan
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.36-47
    • /
    • 2021
  • Objective: This study determined the optimal ratio of whole plant corn silage (WPCS) to corn stover (stems+leaves) silage (CSS) (WPCS:CSS) to reach the greatest profit of dairy farmers and evaluated its consequences with corn available for other purposes, enteric methane production and milk nitrogen efficiency (MNE) at varying milk production levels. Methods: An optimization model was developed. Chemical composition, rumen undegradable protein and metabolizable energy (ME) of WPCS and CSS from 4 cultivars were determined to provide data for the model. Results: At production levels of 0, 10, 20, and 30 kg milk/cow/d, the WPCS:CSS to maximize the profit of dairy farmers was 16:84, 22:78, 44:56, and 88:12, respectively, and the land area needed to grow corn plants was 4.5, 31.4, 33.4, and 30.3 ha, respectively. The amount of corn available (ton DM/ha/yr) for other purposes saved from this land area decreased with higher producing cows. However, compared with high producing cows (30 kg/d milk), more low producing cows (10 kg/d milk) and more land area to grow corn and soybeans was needed to produce the same total amount of milk. Extra land is available to grow corn for a higher milk production, leading to more corn available for other purposes. Increasing ME content of CSS decreased the land area needed, increased the profit of dairy farms and provided more corn available for other purposes. At the optimal WPCS:CSS, MNE and enteric methane production was greater, but methane production per kg milk was lower, for high producing cows. Conclusion: The WPCS:CSS to maximize the profit for dairy farms increases with decreased milk production levels. At a fixed total amount of milk being produced, high producing cows increase corn available for other purposes. At the optimal WPCS:CSS, methane emission intensity is smaller and MNE is greater for high producing cows.

Effects of Heat Treatment of Three Animal by-products on Ruminal Degradation Characteristics and Intestinal Availability of Crude Protein (동물성 부산물 사료 세 종류에 대한 열처리가 조단백질의 반추위내 분해특성 및 하부장기내 이용성에 미치는 영향)

  • Moon, Y.H.;Lee, S.C.;Kim, B.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In order to investigate the effects of heat treatment of three animal by-products(feather meal, tallow meal, viscera meal) on in situ ruminal degradation characteristics and gastrointestinal availability of dietary crude protein(CP), three ruminally and duodenally cannulated dry Holstein cows were employed. Cows were fed a diet containing 60% concentrate and 40% orchard grass hay, and had free access to water and mineral block. Experimental feeds were processed for 4 hr at 149$^{\circ}C$ in a forced-air oven, and were passed through a 1-mm screen. Degradation kinetics of feed protein in the rumen were fitted to an exponential type model, and intestinal availability was estimated by the mobile nylon bag technique. Effective CP degradabilities in the rumen for feather meal, tallow meal and viscera meal were 30.2%, 75.0% and 56.4% at 5% passage rate per hour(k=0.05), respectively. In addition, heat treatment increased effective ruminal CP degradability on feather meal and viscera meal treatments, whereas decreased in tallow meal treatment(P$<$0.05). Gastrointestinal CP disappearances of feather meal, tallow meal and viscera meal were 56.2%, 18.6%, and 37.9%, respectively. In addition, heat treatment decreased the gastrointestinal CP disappearance on feather meal and viscera meal treatment, but increased in tallow meal treatment(P$<$0.05). Intestinal availability of rumen undegradable protein(A-UDP) was 80.4% for feather meal, 83.8% for tallow meal and 86.9% for viscera meal. In addition, heat treatment increased A-UDP on feather meal and tallow meal treatment, 94.0% and 91.3%, respectively, but decreased on viscera meal treatment, 76.5%(P$<$0.05).

Milk Conjugated Linoleic Acid (CLA) Profile and Metabolic Responses of Dairy Cows Fed with High-temperature-micro-time (HTMT) Treated Diets Containing High Quantity Extruded Soybean (ESB)

  • Lee, H.G.;Hong, Z.S.;Wang, J.H.;Xu, C.X.;Jin, Y.C.;Kim, T.K.;Kim, Y.J.;Song, M.K.;Choi, Yun.-Jaei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1504-1512
    • /
    • 2009
  • A feeding trial was conducted to examine the effect of high-temperature-micro-time (HTMT) processing of diets containing extruded soybean (ESB) in high quantity on milk fat production, metabolic responses, and the formation of conjugated linoleic acid (CLA) and trans-vaccenic acid (TVA). Twenty-one multiparous Holstein cows in mid-lactation were blocked according to milk yield in the previous lactation. Cows within each block were randomly assigned to either normal concentrate or HTMT treated diets containing ESB (7.5% HTMT-ESB and 15% HTMT-ESB). It was hypothesized that the HTMT-ESB would affect the undegradable fatty acids in the rumen and, thus, would modify the fatty acid profile of milk fat. Both 7.5% and 15% HTMT-ESB did not affect milk yield, fat, protein, lactose and solid-not-fat (SNF), but the proportion of cis-9, trans-11 CLA in milk fat was significantly increased by these treatments. Content of TVA in milk fat was not affected by HTMT-ESB. The HTMT-ESB influenced the fatty acid profile in milk fat, but there was little difference between 7.5% and 15% of supplementation. HTMT-ESB feeding significantly decreased the concentration of plasma insulin and glucose, while plasma growth hormone (GH), triglyceride (TG), non-esterified fatty acid (NEFA) and HDLcholesterol were increased by 7.5% and 15% ESB-HTMT supplementation in comparison to the control group (p<0.05). However, no significant difference was observed in plasma LDL-cholesterol, insulin like growth factor (IGF)-1, T3, T4, and leptin concentrations among treatments (p>0.05). The present results showed that cis-9, trans-11 CLA production was increased by HTMT treatment of dietary ESB without reduction of milk fat, and the unchanged milk fat and yield was assumed to be associated with the constant level of thyroid hormones, leptin, and IGF-1.