• Title/Summary/Keyword: Unconstrained optimization

Search Result 125, Processing Time 0.023 seconds

AN ADAPTIVE APPROACH OF CONIC TRUST-REGION METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEMS

  • FU JINHUA;SUN WENYU;SAMPAIO RAIMUNDO J. B. DE
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.165-177
    • /
    • 2005
  • In this paper, an adaptive trust region method based on the conic model for unconstrained optimization problems is proposed and analyzed. We establish the global and super linear convergence results of the method. Numerical tests are reported that confirm the efficiency of the new method.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • Lee, Doo-Ho;Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.938-946
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximizeloss factor using a numerical search method. The fractional derivative model can describe damping characteristics of viscoelastic damping materials accurately, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kelvin[RUK] equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are identified with ambient temperatures and thickness ratios of beam and damping layer by using a finite-difference-based steepest descent method.

Length Optimization for Unconstrained Visco-elastic Damping Layer of Beams (비구속형 점탄성 제진층을 갖는 보의 제진층 길이 최적화)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.665-671
    • /
    • 2003
  • Length of an unconstrained viscoelastic damping layer on beams is determined to maximize loss factor using a numerical search method. The fractional derivative model can describe damping characteristics of the viscoelastic damping material, and is used to represent nonlinearity of complex modulus with frequencies and temperatures. Equivalent flexural rigidity of the unconstrained beam is obtained using Ross, Ungar, Kerwin(RUK) equation. The loss factors of partially covered unconstrained beam are calculated by a modal strain energy method. Optimal lengths of the unconstrained viscoelastic damping layer of beams are obtained with respect to ambient temperatures and thickness ratios of beam and damping layer.

  • PDF

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

MODIFIED LIMITED MEMORY BFGS METHOD WITH NONMONOTONE LINE SEARCH FOR UNCONSTRAINED OPTIMIZATION

  • Yuan, Gonglin;Wei, Zengxin;Wu, Yanlin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.767-788
    • /
    • 2010
  • In this paper, we propose two limited memory BFGS algorithms with a nonmonotone line search technique for unconstrained optimization problems. The global convergence of the given methods will be established under suitable conditions. Numerical results show that the presented algorithms are more competitive than the normal BFGS method.

A NOVEL FILLED FUNCTION METHOD FOR GLOBAL OPTIMIZATION

  • Lin, Youjiang;Yang, Yongjian;Zhang, Liansheng
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1253-1267
    • /
    • 2010
  • This paper considers the unconstrained global optimization with the revised filled function methods. The minimization sequence could leave from a local minimizer to a better minimizer of the objective function through minimizing an auxiliary function constructed at the local minimizer. Some promising numerical results are also included.

GLOBAL CONVERGENCE OF AN EFFICIENT HYBRID CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Liu, Jinkui;Du, Xianglin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.73-81
    • /
    • 2013
  • In this paper, an efficient hybrid nonlinear conjugate gradient method is proposed to solve general unconstrained optimization problems on the basis of CD method [2] and DY method [5], which possess the following property: the sufficient descent property holds without any line search. Under the Wolfe line search conditions, we proved the global convergence of the hybrid method for general nonconvex functions. The numerical results show that the hybrid method is especially efficient for the given test problems, and it can be widely used in scientific and engineering computation.

New Parameterizations for Multi-Step Unconstrained Optimization

  • Moghrabi, I.A.;Kassar, A.N
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • We consider multi-step quasi-Newton methods for unconstrained optimization. These methods were introduced by Ford and Moghrabi [1, 2], who showed how interpolating curves could be used to derive a generalization of the Secant Equation (the relation normally employed in the construction of quasi-Newton methods). One of the most successful of these multi-step methods makes use of the current approximation to the Hessian to determine the parameterization of the interpolating curve in the variable-space and, hence, the generalized updating formula. In this paper, we investigate new parameterization techniques to the approximate Hessian, in an attempt to determine a better Hessian approximation at each iteration and, thus, improve the numerical performance of such algorithms.

  • PDF

A TYPE OF MODIFIED BFGS ALGORITHM WITH ANY RANK DEFECTS AND THE LOCAL Q-SUPERLINEAR CONVERGENCE PROPERTIES

  • Ge Ren-Dong;Xia Zun-Quan;Qiang Guo
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.193-208
    • /
    • 2006
  • A modified BFGS algorithm for solving the unconstrained optimization, whose Hessian matrix at the minimum point of the convex function is of rank defects, is presented in this paper. The main idea of the algorithm is first to add a modified term to the convex function for obtain an equivalent model, then simply the model to get the modified BFGS algorithm. The superlinear convergence property of the algorithm is proved in this paper. To compared with the Tensor algorithms presented by R. B. Schnabel (seing [4],[5]), this method is more efficient for solving singular unconstrained optimization in computing amount and complication.

A NEW CLASS OF NONLINEAR CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION MODELS AND ITS APPLICATION IN PORTFOLIO SELECTION

  • Malik, Maulana;Sulaiman, Ibrahim Mohammed;Mamat, Mustafa;Abas, Siti Sabariah;Sukono, Sukono
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.811-837
    • /
    • 2021
  • In this paper, we propose a new conjugate gradient method for solving unconstrained optimization models. By using exact and strong Wolfe line searches, the proposed method possesses the sufficient descent condition and global convergence properties. Numerical results show that the proposed method is efficient at small, medium, and large dimensions for the given test functions. In addition, the proposed method was applied to solve practical application problems in portfolio selection.