• Title/Summary/Keyword: Unconfined compression strength test

Search Result 177, Processing Time 0.021 seconds

Backfill Materials for Underground Facility with Recycling Materials - Quantification of Design Parameters (재활용재료를 이용한 지하매설물용 뒤채움재 - 설계입력변수 정량화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.91-96
    • /
    • 2011
  • The design, construction and management of underground facilities as infrastructure of nation should be properly carried out. One of reasons for underground facilitie's failure is a non-proper construction of backfill materials. This is common for circular underground pipes. A non-proper compaction is the cause of settlement and decrease of performance of underground facilities. The use of controlled low strength materials is an alternative to reduce the couple of failure problems. The flowability, self-cementation, and non-compaction are the major advantages to use the controlled low strength materials. In this research, couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers, were adopted. The basic properties of each materials were determined according to KS or ASTM. Also, couple of laboratory tests were carried out to get the design parameters for geotechnical and roadway area.

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

Performance of fly ash stabilized clay reinforced with human hair fiber

  • Rekha, L. Abi;Keerthana, B.;Ameerlal, H.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.677-687
    • /
    • 2016
  • Industrialization and urbanization are the two phenomena that are going relentless all over the world. The consequence of this economic success has been a massive increase in waste on one hand and increasing demand for suitable sites for construction on the other. Owing to the surplus raw materials and energy requirement needed for manufacturing synthetic fibers, applications of waste fibers for reinforcing soils evidenced to offer economic and environmental benefits. The main objective of the proposed work is to explore the possibilities of improving the strength of soil using fly ash waste as an admixture and Human Hair Fiber (HHF) as reinforcement such that they can be used for construction of embankments and land reclamation projects. The effect of fiber content on soil - fly ash mixture was observed through a series of laboratory tests such as compaction tests, CBR and unconfined compression tests. From the stress - strain curves, it was observed that the UCC strength for the optimised soil - flyash mixture reinforced with 0.75% human hair fibers is nearly 2.85 times higher than that of the untreated soil. Further, it has been noticed that there is about 7.73 times increase in CBR for the reinforced soil compared to untreated soil. This drastic increase in strength may be due to the fact that HHF offer more pull-out resistance which makes the fibers act like a bridge to prevent further cracking and thereby it improves the toughness which in turn prevent the brittle failure of soil-flyash specimen. Hence, the test results reveal that the inclusion of randomly distributed HHF in soil significantly improves the engineering properties of soil and can be effectively utilized in pavements. SEM analysis explained the change of microstructures and the formation of hydration products that offered increase in strength and it was found to be in accordance with strength tests.

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.

An Experimental Study on the Modelling for the Prediction of the Behaviour of EPS (EPS의 거동 예측 모델에 관한 실험적 연구)

  • 천병식;임해식
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.127-136
    • /
    • 1996
  • Recently, EPS which has unit weight of only 20~30kg/m3, is used for acquiring the safety of settlement and bearing capacity, In Korea, EPS was first used in 1993 as backfill material for abutment that was constructed on soft ground in Inchon. Since then EPS has been used increasingly as backfill material. However, adequate modelling has not yet been proposed for the prediction of the behavior of EPS. Only it's design strength was proposed as the results of unconfined strength and creep test. Accordingly this paper executed triaxial compression test on EPS with various density and confining pressure. Through the analysis of test data the behavior of EPS for strainstress, tangential modulus and poisson's ratio can be expressed in functions with parameters of density and confining pressure of EPS. From these results, this paper proposed a nonliner model describing the behavior of EPS.

  • PDF

A Comparative Study on the Structural Characteristics of the Stabilized Soils with Ca, Al System Admixtures. (Ca, Al계 안정처리토의 구조적 특성의 비교)

  • Jeong, Du-Yeong;Choe, Gil-Yeol;Lee, Byeong-Seok
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.5-14
    • /
    • 1986
  • The results of stabilization process in silty.clays and sand-silts, which were, respectively, treated with Calcium hydroxide of the Calcium series and Aluminium Sulphate of the Aluminium series are follows. 1) In the former case used calcium hydrate and calcium cabonate for silty-clays, calcium aluminnium cabonate oxide hydrate and calcium carbonate for sandy-silts were produced 2) In the latter case used Aluminium Sulphate, by X-ray diffraction test, it was found that Aluminium Oxide was produced both in silty-clays and sandy-silts 3) As the results of stabilization process, in the former case, unconfined compression strength was increased greatly but in the latter case it was little increased.

  • PDF

Mechanical Characteristics of Porous Concrete using Recycled-Aggregate (순환골재를 이용한 투수성 콘크리트의 역학특성)

  • You, Seung-Kyong;Yu, Nam-Jae;Cho, Sung-Min;Shim, Min-Bo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.17-20
    • /
    • 2007
  • In this study, a series of uniaxial unconfined compression test and constant-head test were performed to investigate the mechanical characteristics of porous concrete using recycled-aggregate for the varying unit weight and water-cement ratio. To enhance the permeability of the porous concrete, the recycled-aggregate with similar grain size in the range of $40{\pm}5mm$ was used and water-cement ratio that leads to the lean-mix was adapted. The mechanical characteristics of the porous concrete cured for 3 days were examined; the compressive strength and $E_{50}$ showed their maximum values with 40% water-cement ratio and $1.8t/m^3$ unit weight and the permeability coefficient was averagely measured in the range of $0.9{\times}10^0cm/sec$ regardless of water-cement ratio and unit weight.

  • PDF

A Study for the Applicable Bearing-Resistance of Bearing Anchor in the Enlarged-Borehole (지압형 앵커의 지압력 산정에 관한 실험적 연구)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Jung, Chan-Muk
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • An almost permanent anchor (friction type) is resistant to ground deformation due to the friction between the soil and grout at a fixed length from the anchor body. The purpose of this study is to calculate the force of bearing resistance for a bearing anchor in enlarged boreholes. We conducted analytical and numerical analyses, along with laboratory testing, to find the quantities of bearing resistance prior to grouting in EBA (Enlarged Bearing Anchor) construction. The force of bearing resistance from the analytical method was defined as a function of general borehole diameter, expanded borehole diameter, and soil unconfined compressive strength. We also employed the Flac 3D finite difference numerical modeling code to analyze the bearing resistance of the soil conditions. We then created a laboratory experimental model to measure bearing resistance and carried out a pull-out test. The results of these three analyses are presented here, and a regression analysis was performed between bearing resistance and uniaxial compression strength. The laboratory results yield the strongest bearing resistance, with reinforcement 28.5 times greater than the uniaxial compression strength; the analytical and numerical analyses yielded values of 13.3 and 9.9, respectively. This results means that bearing resistance of laboratory test appears to be affected by skin friction resistance. To improve the reliability of these results, a comparison field study is needed to verify which results (analytical, numerical, or laboratory) best represent field observations.

The Durability of Environmentally Friendly Inorganic Grouting Material(NDS) (친환경적인 무기질계 주입재(NDS)의 내구성에 관한 연구)

  • Lee, Hyejin;Lee, Jonghwi;Jung, kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.49-56
    • /
    • 2011
  • Recently, the ground injection method using water glass as one of the components of the main resources and the products of the construction has some basic problems for permanent reinforcement of foundation and stopping leakage of water because it has some serious problems such as durability reduction, compression strength reduction and eluviation. This study was to evaluate the environmental impact and durability of the developed friendliness of Natural and Durable Stabilizer(NDS) of inorganic injection and Space Grouting Roket(SGR) with typical water glass type material. Two materials, NDS and SGR, were compared with each other by unconfined compressive strength test, fish poison test, durability test and triaxial permeability test. The results of the durability test indicated that the 28-day strength of the NDS was 1.5 times higher than that of the SGR. The fish poison test proved that the survival rate in the SGR and NDS is 50~70%, and 100%, respectively. Therefore, the NDS has higher survival rate than that of the existing SGR. The NDS will be considered by an environmentally friendly product and moreover it has a few problems for soil and groundwater pollution.

Dynamic Shear Modulus of Compacted Clayey Soil (다짐점성토(粘性土)의 동적전단탄성계수(動的剪斷彈性係數))

  • Kang, Byung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.109-117
    • /
    • 1983
  • Dynamic shear modulus of the compacted clayey soil was determined by the resonant column test to study the parametric effects of confining pressure, shear strain amplitude, molding water content, compaction energy, void ratio and the degree of saturation. The effect of each of these parameters on the dynamic shear modulus found to be significant and can be explained in terms of the changes in soil by compaction. Dynamic shear modulus of the compacted soil is increased significantly by compaction and compaction at the dry side of the optimum moisture content is much more effective. It is also found that the dynamic shear modulus showes a good correlation to the static shear strength of the compacted soil. Therefore the dynamic shear modulus of the compacted soil for a certain confining pressure may be obtained ea8i1y from the unconfined compression strength.

  • PDF