• Title/Summary/Keyword: Unconfined Compression Strength

Search Result 248, Processing Time 0.02 seconds

Effect of Salinity on Mechanical Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성에 대한 염분의 영향)

  • Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.47-53
    • /
    • 2011
  • Marine dredged soils taken from navigation channels or construction sites of coastal area usually have a lot of salt in pores of clayey soils. This paper investigates effect of salt on mechanical characteristics of non-salt and salt-rich stabilized dredged soil. The stabilized dredged soil (SDS) consisted of dredged soil and cement. Several pairs of SDS with non-salt and salt-rich dredged soils, noted as N-SDS and S-SDS, respectively, were prepared to compare their strengths and compressibility characteristics. The microstructures, strength and compressibility characteristics of N-SDS and S-SDS specimens at 7 and 28 days of curing time were evaluated using scanning electronic microscope (SEM), unconfined compression test, and oedometer test. It was found that salt concentration of clayey soil affected not only the formation of soil structure but also the strength development of mixture. The compression index and swelling index of S-SDS were also greater than those of N-SDS, which indicated that the compressibility of mixture increased due to salt concentration. Salinity in clayey soil had a negative effect on the strength development and compressibility characteristics of stabilized dredged soils.

Strength and Deformation Characteristics of Lightweight Foamed Soil Using In-situ Soil (현장발생토를 활용한 경량기포흔합토(LWFS)의 강도 및 변형특성)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.125-131
    • /
    • 2004
  • A series of unconfined compression tests were carried out firstly to investigate mechanical behaviors of Lightweight Foamed Soil (LWFS) which is composed of dredged soils, cement and air foam. And secondly, to compare the difference of mechanical characteristic of LWFS with previous research conclusions (Yoon & Kim,2004) by using different dredged soils sampled at Joong-Ma in Gwangyang harbor area. Based on numberous laboratory experiments, it was found that deformation coefficient $(E_{50})$ of LWFS increases with increasing cement contents but decreases with increasing initial water contents of dredged soils. Appropriate regression formula (normalizing factor scheme) which considers relationship between LWFS composing elements, initial water contents of dredged soils, cement, air foam, and uniaxial compression strength or LWFS is proposed for practical applications. Finally, it was clear that, to apply LWFS method to practical projects, certain laboratory test would be necessary to take considerations of soil locality because mechanical charac-teristics of LWFS were surely dependent upon their sampled locations and properties.

Engineering properties of expansive soil treated with polypropylene fibers

  • Ali, Muhammad;Aziz, Mubashir;Hamza, Muhammad;Madni, Muhammad Faizan
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Expansive soils are renowned for their swelling-shrinkage property and these volumetric changes resultantly cause huge damage to civil infrastructures. Likewise, subgrades consisting of expansive soils instigate serviceability failures in pavements across various regions of Pakistan and worldwide. This study presents the use of polypropylene fibers to improve the engineering properties of a local swelling soil. The moisture-density relationship, unconfined compressive strength (UCS) and elastic modulus (E50), California bearing ratio (CBR) and one-dimensional consolidation behavior of the soil treated with 0, 0.2, 0.4, 0.6 and 0.8% fibers have been investigated in this study. It is found that the maximum dry density of reinforced soil slightly decreased by 2.8% due to replacement of heavier soil particles by light-weight fibers and the optimum moisture content remained almost unaffected due to non-absorbent nature of the fibers. A significant improvement has been observed in UCS (an increase of 279%), E50 (an increase of 113.6%) and CBR value (an increase of 94.4% under unsoaked and an increase of 55.6% under soaked conditions) of the soil reinforced with 0.4% fibers, thereby providing a better quality subgrade for the construction of pavements on such soils. Free swell and swell pressure of the soil also significantly reduced (94.4% and 87.9%, respectively) with the addition of 0.8% fibers and eventually converting the medium swelling soil to a low swelling class. Similarly, the compression and rebound indices also reduced by 69.9% and 88%, respectively with fiber inclusion of 0.8%. From the experimental evaluations, it emerges that polypropylene fiber has great potential as a low cost and sustainable stabilizing material for widespread swelling soils.

Fundamental Studies on Stabilization of Shallow Slope Failure Using Lime Pile - Changes of Clayey Properties with Lime Addition - (생석회 파일을 이용한 얕은 사면 파괴의 안정화에 대한 기초 연구 - 생석회 첨가에 따른 점성토의 특성 변화 중심으로 -)

  • Kwon, Moonam;Goo, Jeungmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.49-55
    • /
    • 2006
  • Quick lime made from limestone that are deposited abundantly in Korea has excellent potentials for stabilization of clayey soils. If Korea is able to take advantage of its abundant supply, economical efficiency could be achieved through mass production as well as being able to take advantage of utilization of natural resources. For stabilizing of clayey soil with lime, it is necessary to determine the required quantities of lime firstly and to evaluate the degree of stabilization with lime content. In this test, the quantity of lime required for 2 clayey soils which located in Seunggok and Bugok province respectively, and for 2 clay minerals-kaolinite and montmorillonite-were determined by ASTM C 977-92 and were evaluated for solidification of each samples with changing lime contents by Atterberg limit test and pH test. It was also evaluated for the improvement of each sample with lime content and curing time. The sample which added lime content determined by ASTM C 977-92 increased plastic limit, unconfined compression strength, and decreased pH in increasing trend.

  • PDF

Application of Earth Natural Grouting Using Micro Cement and Inorganic material (마이크로시멘트 무기질계 그라우팅 ENG의 적용성 연구)

  • Jung, Min-Hyung;Kim, Yong-Sik;Jung, Chun-Hak;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2010
  • The Water glass grouting method has been applied frequently to penetration grouting in practice, but some problems, such as decrease of durability with the elapsed time and environmentally adverse effect, are raised recently. Hence, the Earth Natural Grouting method which uses micro cement and inorganic material is developed to overcomes those problems of the water glass grouting method, and is aimed for extensive ground injection bound. Volumetric strain test, syneresis test, unconfined compression test, triaxial permeability test, in-situ permeability test and heavy metal analysis were conducted to verify application of the ENG. As the result of tests, volumetric strain, syneresis and unconfined strength of the ENG were superior to those of the Water Glass SGR and ENG was proved to be impermeable. Also it is expected that the ENG would not have an effect on environmental pollution.

A Study on the Strength Degradation of Weathered Granite Soil by Freezing and Thawing (동결융해에 의한 화강풍화토의 강도저하에 관한 연구)

  • Kim, Yong-Soo;Jung, Soo-Jung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • The property of weathered soil cannot but have a possibility of having a limit when its precise approaching due to the various weathering environment, and the peculiarity of its conduct affected by the weathering degree and effect factors. Especially most domestic or international researches are concentrated on the sedimentary soil, trying to analyze the mechanical behavior of weathered soil from the viewpoint of sedimentary soil. Therefore, it's difficult to judge if those results meet the actual conduct of weathered soil. This study suggested a way of weathering degree changing experiment as an early stage in an experiment of artificially changing weathering degree. In order to find out the property of strength change by the change of weathering degree, indoor mechanical experiment was made using soil sample after freezing and thawing. Under the weathering degree, characteristic change is watched by country rock and region of weathered granite soil.

  • PDF

Standardization of Ice Mechanics Experimental Procedures in a Cold Room (Cold Room을 이용한 얼음 및 동토의 재료특성 계측 실험기법의 표준화)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.60-66
    • /
    • 2007
  • The first Korean cold room facility for ice mechanics experiments was assembled in 2004. Since then, the $4m{\times}6m$ cold room facility has been used, extensively under various environmental and loading conditions. After reviewing published references on cold room testing methods and also by trial and error, the standard procedures for testing and preparing laboratory ice material were established for the measurement of basic ice properties. In this paper, laboratory experimental techniques with the cold room facility and standard procedures established for ice material properties are introduced. Test specimens include laboratory-grown fresh water ice and frozen soils. Tests are carried out for unconfined compressive strength. Preparation and dimension of the specimen are the most important issues arising in cold room tests. The details of specimen preparation, testing procedure and strength test results are also discussed.

Interpretation of Empirical Cone Factors for Determining Undrained Strength (비배수강도 결정을 위한 콘 지수 연구)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3296-3301
    • /
    • 2009
  • The results of PCPT(Pezocone Penetration Test) are widely used for the estimation of the undrained shear strength, for which the empirical cone factors($N_{kt}$, $N_{ke}$, $N_{{\Delta}u}$) need to be obtained at each site. In this study, the cone factors were estimated, for the soils at Bookmyun area in Changwon city, using the undrained shear strengths from the unconfined and UU triaxial compression tests. The parametric studies with plastic index and pore water pressure ratio were performed as well. $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$ were estimated in the ranges of 8~40, 7~37, and 1~26 respectively. It was observed that there is a relationship between the cone factors, specially $N_{{\Delta}u}$, and the pore pressure ratio.

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.