• Title/Summary/Keyword: Uncertainty measurement

Search Result 930, Processing Time 0.026 seconds

Estimation of Measurement Uncertainty for Vibration Tests in the Machine Tool Main Spindle (공작기계 주축회전체 진동 측정에서의 불확도 추정 방법)

  • Lee, Jung-Hoon;Yoon, Sang-Hwan;Chau, Dinh Minh;Park, Min-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.404-409
    • /
    • 2011
  • Report on the notion of uncertainty is important. The reason is that the measured value includes a lot of uncertain factors. Reliable results can't be derived without the notion of uncertainty. The mathematical model to evaluate uncertainty considering the quality of vibration is important to evaluate uncertainty, and it must contain the every quantity which contributes significantly to uncertainty in the measured results. In this paper, the evaluation of uncertainty analysis about rotor vibration measurements of machine tools is presented to evaluate the most important factors of uncertainty.

Development of the calibration procedure of the reference sound source and case study on the uncertainty evaluation (기준음원의 교정 절차 개발 및 불확도 평가 사례)

  • Jae-Gap Suh;Wan-Ho Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.344-350
    • /
    • 2024
  • A Reference Sound Source (RSS) is an important standard device employed in measuring sound power. The specifications of RSS is specified in international standards, and it is classified as a major calibration item in the field of acoustic metrology. Since the output power of RSS is affected by the supply voltage, each country needs to secure its own calibration service system. In this study, a procedure for calibrating a RSS is established based on the reverberant room conditions and uncertainty evaluation is conducted. Basically, the calibration procedure can apply a precision measurement process of acoustic power, and here, the measurement method using the reverberation chamber of ISO 3741 is applied. For this purpose, a measurement system is constructed, measurements are conducted with two types of RSS, and measurement uncertainty is evaluated. Through measurement examples, it is confirmed that the non-uniformity of the sound pressure distribution in the reverberation room and the volume measurement uncertainty contributed significantly to the overall uncertainty. Additionally, the influence of input voltage is experimentally examined to examine the uncertainty contribution that can be reflected in acoustic power measurements.

Measurement Uncertainty for Analysis of Volatile Organic Compound in Cigarette Mainstream Smoke (담배 연기 중 휘발성 유기물질 분석에 대한 측정 불확도 산출)

  • Ka, Mi-Hyun;Cho, Sung-Eel;Kim, Mi-Ju;Lee, Chul-Hee;Ji, Sang-Un;Jeong, Jong-Soo;Kim, Yong-Ha;Min, Young-Keun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.2
    • /
    • pp.144-151
    • /
    • 2006
  • A measurement uncertainty for analysis of volatile organic compound (benzene) in cigarette mainstream smoke was carried out. In this study one point re-calibration method was used to estimate uncertainty for benzene. The measurement uncertainty was calculated based on the uncertainty sources of each analysis step, quality appraisal sources, drift and repeatability. As a result, the concentration and expanded uncertainty of benzene in cigarette mainstream smoke were measured as $38.08{\pm}4.36{\mu}g/cig$. Relative uncertainty of drift and repeatability obtained were 5% and 3%, respectively.

Estimation of Measurement Uncertainty in Evaluation of Tensile Properties (인장 물성 측정 불확도 평가)

  • Huh, Y.H.;Lee, H.M.;Kim, D.J.;Park, J.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • Estimation of tensile properties measurement uncertainty of material was carried out. Sources of uncertainty affecting the measurement of tensile properties were classified and analyzed. The models for uncertainty evaluation of measurands to be determined from tensile test, such as elastic modulus, yield strength and tensile strength, were suggested and derived from the mathematical relations, corresponding to the respective measurands, and the measuring quantities by calculating each sensitivity coefficient of the quantities. Based on these models, the uncertainty of the tensile properties was evaluated from the experimental data of SUS316LN determined according to ISO 6892.

Uncertainty Evaluation of the Analysis of Methamphetamine and Amphetamine in Human Hair by GC/MS (GC/MS를 이용한 모발 중 메스암페타민 및 암페타민 분석의 측정불확도 평가)

  • Kim, Jin-Young;Kim, Jong-Sang;Kim, Min-Kyoung;Lee, Jae-Il;Suh, Yong-Jun;In, Moon-kyo
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.206-213
    • /
    • 2007
  • Recently estimating the uncertainty of an analytical result has become an essential part of quantitative analysis. This study describes the uncertainty of the measurement for the determination of methamphetamine and its major metabolite amphetamine in human hair, The method consists of washing, drying, weighing, incubation and extraction with methanolic HCI solution, clean-up, trifluoroacetyl derivatization, and qualification/quantification of residues by gas chromatography/mass spectrometry (GC/MS). Traceability of measurement was established through traceable standards and calibrated volumetric equipment and measuring instruments. Measurement uncertainty associated with each analyte in real samples was estimated using quality control (QC) data. The main source of combined standard uncertainty comprised two components, which are uncertainties associated with calibration linearity and variations in QC, while those associated with preparation of analytical standards and sample weighing were not so important considering the degree of contribution. Relative combined standard uncertainties associated with the described method ranged for individual analytes from 4.99 to5.03%.

Measurement Uncertainty calculation for improving test reliability of Agricultural tractor ROPS Test (농업용트랙터 ROPS 시험의 신뢰성 향상을 위한 측정불확도 추정)

  • Ryu Gap Lim;Young Sun Kang;Taek Jin Kim
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • The agricultural tractor ROPS test method according to OECD code 4 is a test to assess whether the driver's safety area can be secured when a tractor overturns, and reliability should be ensured. In this study, a model formula and procedure for calculating measurement uncertainty expressing reliability in the field of agricultural machinery testing were established according to the ISO/IEC Guide 98-3:2008. The characteristics of the ROPS test device were assessed and repeated tests were performed, and the were used as factors to calculate the measurement uncertainty. As a result of repeated tests, the accuracy was higher than 1.9 % in all load directions; thus, they were, applied to calculate the type A standard uncertainty. The final expanded uncertainty was calculated within the range of less than ± 7.76 kN of force and ± 6.96 mm of deformation in all load directions.

Estimation of uncertainty for the determination of residual flubendazole in pork (돼지고기 중 플루벤다졸 잔류분석의 불확도 추정)

  • Kim, MeeKyung;Park, Su-Jeong;Lim, Chae-Mi;Cho, Byung-Hoon;Kwon, Hyun-Jeong;Kim, Dong-Gyu;Chung, Gab-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Measurement uncertainty could play an important role in the assessment of test results in laboratories and industries. We investigated measurement uncertainties possibly included in determination of flubendazole, a benzimidazole anthelmintic, in pork by HPLC. The concentration of flubendazole was 62.69 ng/g in a sample of pork. Uncertainty was estimated in the analytical procedure of flubendazole. A model equation was made for determination of flubendazole in pork. The four uncertainty components such as weight of sample, volume of sample, calibration curve, and recovery were selected to estimate measurement uncertainties. Standard uncertainty was calculated for each component and all the standard uncertainties were combined. The combined standard uncertainty was expanded to a sample population as an expanded uncertainty. The expanded uncertainty was calculated using k value on Student's t-table and effective degrees of freedom from Welch-Satterthwaite formula. The expanded uncertainty was calculated as 3.45 with the combined standard uncertainty, 1.584 6 and the k value, 2.18. The final expression can be ($62.69{\pm}3.45$) ng/g (confidence level 95%, k = 2.18). The uncertainty value might be estimated differently depending on the selection of the uncertainty components. It is difficult to estimate all the uncertainty factors. Therefore, it is better to take several big effecting components instead of many small effecting components.

Absolute Test for a 4-inch Flat and Its Measurement Uncertainty (4인치 평면의 절대 측정 및 측정불확도 계산)

  • Kim, Su-Young;Song, Jae-Bong;Yang, Ho-Soon;Rhee, Hyug-Gyo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.339-345
    • /
    • 2017
  • The flatness of a reference flat plays an important role, from the calibration of an interferometer to the reference for a semiconductor or flat-panel display, etc. Especially if we order the flatness measurement outside Korea, we may spend more time and money. In this paper, we measured the flatness of a reference flat using a three-flat test, which is one of the absolute measurement methods, and calculated its measurement uncertainty. In the three-flat test we adopted, each flat is tested against another flat, with three unknown flats, using an interferometer. Among several three-flat tests, we adopted Griesmann's method which has a low measurement uncertainty and is less dependent on the experimental equipment. As a result, the measurement uncertainty was found to be less than 0.5 nm rms, which is very accurate for high-tech industrial applications.

Investigation on the Seventh Grade Student's Preconceptions about Measurement Theory (측정이론에 관한 중학교 1학년 학생의 선개념 조사)

  • Suh, Jung-Ah
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.455-465
    • /
    • 2002
  • This study investigates students' preconceptions about measurement theory; repeating measurements. how to handle repeat measurements, measurement errors, and uncertainty. Thirty students in seventh grade participated in this study. Students' conceptions were elicited using observation and interview notes. Half of the students measured only two times. and none of them more than five times. After repeating measurements, seventy seven percent of them selected result according to their feelings, while only thirteen percent of them calculated the mean. Sixty percent of them regarded the main cause of measurement errors as their mistakes, not as the problems of environment or measuring instrument. Most students thought the main reason of various results by different persons or time period as human. Forty percent of them denied the uncertainty of measurement, while thirty three agreed, and most students thought the reason of uncertainty was due to human imperfection. This study showed more than half of the students did not know how to handle repeat measurements, and they regarded the cause of measurement errors as their mistakes. In addition, they thought the main reason of various measuring results and uncertainty as human.

Uncertainty Analysis for Speed and Power Performance in Sea Trial using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 시운전 선속-동력 성능에 대한 불확실성 해석)

  • Seo, Dae-Won;Kim, Min-Su;Kim, Sang-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • The speed and power performance of a ship is not only a guarantee issue between the ship owner and the ship-yard, but also is related with the Energy Efficiency Design Index (EEDI) regulation. Recently, International Organization for Standardization (ISO) published the procedure of the measurement and assessment for ship speed and power at sea trial. The results of speed and power performance measured in actual sea condition must inevitably include various uncertainty factors. In this study, the influence for systematic error of shaft power measurement system was examined using the Monte Carlo simulation. It is found that the expanded uncertainty of speed and power performance is approximately ${\pm}1.2%$ at the 95% confidence level(k=2) and most of the uncertainty factor is attributed to shaft torque measurement system.