• Title/Summary/Keyword: Uncertain parameters

Search Result 446, Processing Time 0.032 seconds

Development of Demand Forecasting Model for Seoul Shared Bicycle (서울시 공유자전거의 수요 예측 모델 개발)

  • Lim, Heejong;Chung, Kwanghun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.132-140
    • /
    • 2019
  • Recently, many cities around the world introduced and operated shared bicycle system to reduce the traffic and air pollution. Seoul also provides shared bicycle service called as "Ddareungi" since 2015. As the use of shared bicycle increases, the demand for bicycle in each station is also increasing. In addition to the restriction on budget, however, there are managerial issues due to the different demands of each station. Currently, while bicycle rebalancing is used to resolve the huge imbalance of demands among many stations, forecasting uncertain demand at the future is more important problem in practice. In this paper, we develop forecasting model for demand for Seoul shared bicycle using statistical time series analysis and apply our model to the real data. In particular, we apply Holt-Winters method which was used to forecast electricity demand, and perform sensitivity analysis on the parameters that affect on real demand forecasting.

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.

Analysis of Preconcentration Dynamics inside Dead-end Microchannel (막다른 미세유로 내부의 농축 동역학 분석)

  • Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.155-161
    • /
    • 2023
  • Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel's applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Fundamental Study on the Design of Steel Tube Structures Based on the Qualitative Analysis (복합강구조물 설계에 정성분석기법을 적용하기 위한 기초연구)

  • Kang, Hyun-Sik;Lim, Seo-Hyung;Park, Yong-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.149-156
    • /
    • 2006
  • Steel hollow section members have been widely used as a major material in the construction market due largely to their efficiency, their aesthetic appeal and to the technical development. But it is true that the commercial Program for dealing with a joint problem using hollow section members is not firmly established due to its uncertain and variable design parameters. The qualitative analysis program developed by using computer is introduced in this study. The results of that analysis are shown in the two-dimensional space in variable ranges and diagrams, so it would be useful to whom have not many experiences and knowledges. It is represented that the differences between Canadian code and the Korean standard for the connections of hollow section members. And It is verified that the software is applicable to the Preliminary design in steel tubular structures.

SOLVING BI-OBJECTIVE TRANSPORTATION PROBLEM UNDER NEUTROSOPHIC ENVIRONMENT

  • S. SANDHIYA;ANURADHA DHANAPAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.831-854
    • /
    • 2024
  • The transportation problem (TP) is one of the earliest and the most significant implementations of linear programming problem (LPP). It is a specific type of LPP that mostly works with logistics and it is connected to day-to-day activities in our everyday lives. Nowadays decision makers (DM's) aim to reduce the transporting expenses and simultaneously aim to reduce the transporting time of the distribution system so the bi-objective transportation problem (BOTP) is established in the research. In real life, the transportation parameters are naturally uncertain due to insufficient data, poor judgement and circumstances in the environment, etc. In view of this, neutrosophic bi-objective transportation problem (NBOTP) is introduced in this paper. By introducing single-valued trapezoidal neutrosophic numbers (SVTrNNs) to the co-efficient of the objective function, supply and demand constraints, the problem is formulated. The DM's aim is to determine the optimal compromise solution for NBOTP. The extended weighted possibility mean for single-valued trapezoidal neutrosophic numbers based on [40] is proposed to transform the single-valued trapezoidal neutrosophic BOTP (SVTrNBOTP) into its deterministic BOTP. The transformed deterministic BOTP is then solved using the dripping method [10]. Numerical examples are provided to illustrate the applicability, effectiveness and usefulness of the solution approach. A sensitivity analysis (SA) determines the sensitivity ranges for the objective functions of deterministic BOTP. Finally, the obtained optimal compromise solution from the proposed approach provides a better result as compared to the existing approaches and conclusions are discussed for future research.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-102
    • /
    • 1992
  • Landslides on hillside slopes with shallow soil cover over a sloping bedrock are frequently caused by increases in porewater pressures following of heavy rainfall and it is one of the most important factors of assessing the risk of landslide to predict the groundwater level fluctuations in hillslopes. This paper presents the comparative study of three unsaturated flow models developed by Sloan et al., Reddi, L.N., and Thomas, H.A., Jr., respectively, which are used to predict the increase of groundwater levels in hillside slopes. The parametric study for each of models is also presented. The Kinematic Storage Model(KSM) developed by Sloan et at. is utilized to predict the saturated groundwater flow. They are applied to the two sites in Korea so as to examine the possibility of use in the groundwater flow model. The results show that two unsaturated models developed by Sloan et al. and Reddi, L. N. are largely affected by the uncertain parameters like saturated permeability and saturated water content : the abed model has the potential of use in unsaturated flow model with the optimal estimates of model parameters utilizing available optimization techniques. And it is also found that the KSM must be modified to account for the time delay effect in the saturated zone. The results of this paper are able to be utilized in developing the predictive model of groan dwater level fluctuations in a hillslope.

  • PDF

Sequential Bayesian Updating Module of Input Parameter Distributions for More Reliable Probabilistic Safety Assessment of HLW Radioactive Repository (고준위 방사성 폐기물 처분장 확률론적 안전성평가 신뢰도 제고를 위한 입력 파라미터 연속 베이지안 업데이팅 모듈 개발)

  • Lee, Youn-Myoung;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.179-194
    • /
    • 2020
  • A Bayesian approach was introduced to improve the belief of prior distributions of input parameters for the probabilistic safety assessment of radioactive waste repository. A GoldSim-based module was developed using the Markov chain Monte Carlo algorithm and implemented through GSTSPA (GoldSim Total System Performance Assessment), a GoldSim template for generic/site-specific safety assessment of the radioactive repository system. In this study, sequential Bayesian updating of prior distributions was comprehensively explained and used as a basis to conduct a reliable safety assessment of the repository. The prior distribution to three sequential posterior distributions for several selected parameters associated with nuclide transport in the fractured rock medium was updated with assumed likelihood functions. The process was demonstrated through a probabilistic safety assessment of the conceptual repository for illustrative purposes. Through this study, it was shown that insufficient observed data could enhance the belief of prior distributions for input parameter values commonly available, which are usually uncertain. This is particularly applicable for nuclide behavior in and around the repository system, which typically exhibited a long time span and wide modeling domain.

Development on an Automatic Calibration Module of the SWMM for Watershed Runoff Simulation and Water Quality Simulation (유역유출 및 수질모의에 관한 SWMM의 자동 보정 모듈 개발)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.343-356
    • /
    • 2014
  • The SWMM (storm water management model) has been widely used in the world and is a watershed runoff simulation model used for a single event or a continuous simulation of runoff quantity and quality. However, there are many uncertain parameters in the watershed runoff continuous simulation module and the water quality module, which make it difficult to use the SWMM. The purpose of the study is to develop an automatic calibration module of the SWMM not only for watershed runoff continuous simulation, but also water quality simulation. The automatic calibration module was developed by linking the SWMM with the SCE-UA (shuffled complex evolution-University of Arizona) that is a global optimization algorithm. Estimation parameters of the SWMM were selected and search ranges of them were reasonably configured. The module was validated by calibration and verification of the watershed runoff continuous simulation model and the water quality model for the Donghyang Stage Station Basin. The calibration results for watershed runoff continuous simulation model were excellent and those for water quality simulation model were generally satisfactory. The module could be used in various studies and designs for watershed runoff and water quality analyses.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF