• Title/Summary/Keyword: Uncertain Programming

Search Result 62, Processing Time 0.023 seconds

Reliability-based Shape Optimization Using Growth Strain Method (성장-변형률법을 이용한 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

Component Procurement Planning with Demand Uncertainty Under Assemble-to-Order Environments (불확실한 수요를 갖는 주문 조립 환경에서의 부품 조달 계획에 관한 연구)

  • Lee, Geun-Cheol;Kim, Jung-Ug;Hong, Jung Man
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.121-134
    • /
    • 2012
  • In this study, we consider a component procurement planning problem where the procurement amounts of components are determined under assemble-to-order systems with demand uncertainty. In the problem, procurement amount of each component is decided before the demands of finished products are known and after the demands are identified the assembly amounts of the finished products are decided. In this study, the objective function of the problem is minimizing the total costs which are composed of purchase and inventory costs of the components and the backorder costs of the finished products. We assume that the uncertain demand information is given as multiple scenarios of the demands, and we propose procurement planning methods based on stochastic models which considering the multiple demand scenarios. To evaluate the performances of the proposed methods, computational experiments were carried out on the proposed methods as well as benchmarks including a method based on deterministic mathematical model and a heuristic. From the results of the computational tests, the superiorities of the proposed methods were shown.

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

National Defense Decision-Making : Prospects and New Directions (국방의사결정 : 전망과 대비방향)

  • Gwon Tae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.1
    • /
    • pp.18-34
    • /
    • 1990
  • In light of the recent developments of transitory nature, it is likely that national defense decision-making will be more difficult to make for years to come. In other words, sudden changes in security environment would call into question the basic assumptions on which we have built our national defense planning and increase the number of the uncertain factors in the decision-making process; the subdivision and ramification of national defense management would increase the factors for decision-making and complicate even further the mutual interactions among these factors; the accelerated pace of sophistication and diversification of weapon systems and military technology would increase the risk of failure and system costs geometrically; and the reduced level of acceptance among the people on the sanctification of national defense in proportion to the rapid progress toward a more democratic and industrial society would engender an increased criticism or checking role by the National Assembly or by the mass media. As the changes in national defense environment and conditions create an innumerable number of new tasks, this paper intends to suggest a few core policy measures to improve the quality of national defense decision-making. More specifically, it proposes to 1) eradicate entirely the bureaucratic behavior and tendencies; 2) utilize actively the brain staff for quality assurance of decision-making; 3) and introduce and apply as a whole set, a total system, or an incorporated pack age the PPBEES(Planning-Programming-Budgeting-Executing-Evaluating-System)/LCMM (Life-Cycle Management Model for System Acquision), the OR/SA(Operations Research/Systems Analysis), and DMIS (Defense Management Information System).

  • PDF

Approximate Dynamic Programming Based Interceptor Fire Control and Effectiveness Analysis for M-To-M Engagement (근사적 동적계획을 활용한 요격통제 및 동시교전 효과분석)

  • Lee, Changseok;Kim, Ju-Hyun;Choi, Bong Wan;Kim, Kyeongtaek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • As low altitude long-range artillery threat has been strengthened, the development of anti-artillery interception system to protect assets against its attacks will be kicked off. We view the defense of long-range artillery attacks as a typical dynamic weapon target assignment (DWTA) problem. DWTA is a sequential decision process in which decision making under future uncertain attacks affects the subsequent decision processes and its results. These are typical characteristics of Markov decision process (MDP) model. We formulate the problem as a MDP model to examine the assignment policy for the defender. The proximity of the capital of South Korea to North Korea border limits the computation time for its solution to a few second. Within the allowed time interval, it is impossible to compute the exact optimal solution. We apply approximate dynamic programming (ADP) approach to check if ADP approach solve the MDP model within processing time limit. We employ Shoot-Shoot-Look policy as a baseline strategy and compare it with ADP approach for three scenarios. Simulation results show that ADP approach provide better solution than the baseline strategy.

Optimization of Water Reuse System under Uncertainty (불확실성을 고려한 하수처리수 재이용 관로의 최적화)

  • Chung, Gun-Hui;Kim, Tae-Woong;Lee, Jeong-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Due to the increased water demand and severe drought as an effect of the global warming, the effluent from wastewater treatment plants becomes considered as an alternative water source to supply agricultural, industrial, and public (gardening) water demand. The effluent from the wastewater treatment plant is a sustainable water source because of its good quality and stable amount of water discharge. In this study, the water reuse system was developed to minimize total construction cost to cope with the uncertain water demand in future using two-stage stochastic linear programming with binary variables. The pipes in the water reuse network were constructed in two stages of which in the first stage, the water demands of users are assumed to be known, while the water demands in the second stage have uncertainty in the predicted value. However, the water reuse system has to be designed now when the future water demands are not known precisely. Therefore, the construction of a pipe parallel with the existing one was allowed to meet the increased water demands in the second stage. As a result, the trade-off of construction costs between a pipe with large diameter and two pipes having small diameters was evaluated and the optimal solution was found. Three scenarios for the future water demand were selected and a hypothetical water reuse network considering the uncertainties was optimized. The results provide the information about the economies of scale in the water reuse network and the long range water supply plan.

The Impact of Redundancy and Teamwork on Resilience Engineering Factors by Fuzzy Mathematical Programming and Analysis of Variance in a Large Petrochemical Plant

  • Azadeh, Ali;Salehi, Vahid;Mirzayi, Mahsa
    • Safety and Health at Work
    • /
    • v.7 no.4
    • /
    • pp.307-316
    • /
    • 2016
  • Background: Resilience engineering (RE) is a new paradigm that can control incidents and reduce their consequences. Integrated RE includes four new factors-self-organization, teamwork, redundancy, and fault-tolerance-in addition to conventional RE factors. This study aimed to evaluate the impacts of these four factors on RE and determine the most efficient factor in an uncertain environment. Methods: The required data were collected through a questionnaire in a petrochemical plant in June 2013. The questionnaire was completed by 115 respondents including 37 managers and 78 operators. Fuzzy data envelopment analysis was used in different ${\alpha}$-cuts in order to calculate the impact of each factor. Analysis of variance was employed to compare the efficiency score means of the four abovementioned factors. Results: The results showed that as ${\alpha}$ approached 0 and the system became fuzzier (${\alpha}=0.3$ and ${\alpha}=0.1$), teamwork played a significant role and had the highest impact on the resilient system. In contrast, as ${\alpha}$ approached 1 and the fuzzy system went toward a certain mode (${\alpha}=0.9$ and ${\alpha}=1$), redundancy had a vital role in the selected resilient system. Therefore, redundancy and teamwork were the most efficient factors. Conclusion: The approach developed in this study could be used for identifying the most important factors in such environments. The results of this study may help managers to have better understanding of weak and strong points in such industries.

A Study on Economic Analysis Algorithm for Energy Storage System Considering Peak Reduction and a Special Tariff (피크저감과 특례요금제를 고려한 ESS 경제성 분석 알고리즘에 관한 연구)

  • Son, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1278-1285
    • /
    • 2018
  • For saving electricity bill, energy storage system(ESS) is being installed in factories, public building and commercial building with a Time-of-Use(TOU) tariff which consists of demand charge(KRW/kW) and energy charge(KRW/kWh). However, both of peak reduction and ESS special tariff are not considered in an analysis of initial cost payback period(ICPP) on ESS. Since it is difficult to reflect base rate by an amount of uncertain peak demand reduction during mid-peak and on-peak periods in the future days. Therefore, the ICPP on ESS can be increased. Based on this background, this paper presents the advanced analysis method for the ICPP on ESS. In the proposed algorithm, the representative days of monthly electricity consumption pattern for the amount of peak reduction can be found by the k­means clustering algorithm. Moreover, the total expected energy costs of representative days are minimized by optimal daily ESS operation considering both peak reduction and the special tariff through a mixed-integer linear programming(MILP). And then, the amount of peak reduction becomes a value that the sum of the expected energy costs for 12 months is maximum. The annual benefit cost is decided by the amount of annual peak reduction. Two simulation cases are considered in this study, which one only considers the special tariff and another considers both of the special tariff and amount of peak reduction. The ICPP in the proposed method is shortened by 18 months compared to the conventional method.

Robust Berth Planning under Uncertain Vessel Arrival (선박 도착시간의 불확실성에 강건한 선석 계획)

  • Park, Hyun-Ji;Park, Jin-Hyoung;Cho, Sung-Won
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.102-108
    • /
    • 2021
  • The purpose of this study is to develop a proactive methodology for disruption due to uncertainty in vessels' arrival time. As worldwide imports and exports increased rapidly, the importance of berth planning in container terminals has increased accordingly. Since the berth plan determines the capacity of the container terminal, it aims to maximize efficiency by minimizing the time and space gap between the vessels. In reality, several uncertainties disrupt the initial berth plan resulting in economic losses. In this study, we propose a robust berth plan for preventing disruption.

Force-deformation relationship prediction of bridge piers through stacked LSTM network using fast and slow cyclic tests

  • Omid Yazdanpanah;Minwoo Chang;Minseok Park;Yunbyeong Chae
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.469-484
    • /
    • 2023
  • A deep recursive bidirectional Cuda Deep Neural Network Long Short Term Memory (Bi-CuDNNLSTM) layer is recruited in this paper to predict the entire force time histories, and the corresponding hysteresis and backbone curves of reinforced concrete (RC) bridge piers using experimental fast and slow cyclic tests. The proposed stacked Bi-CuDNNLSTM layers involve multiple uncertain input variables, including horizontal actuator displacements, vertical actuators axial loads, the effective height of the bridge pier, the moment of inertia, and mass. The functional application programming interface in the Keras Python library is utilized to develop a deep learning model considering all the above various input attributes. To have a robust and reliable prediction, the dataset for both the fast and slow cyclic tests is split into three mutually exclusive subsets of training, validation, and testing (unseen). The whole datasets include 17 RC bridge piers tested experimentally ten for fast and seven for slow cyclic tests. The results bring to light that the mean absolute error, as a loss function, is monotonically decreased to zero for both the training and validation datasets after 5000 epochs, and a high level of correlation is observed between the predicted and the experimentally measured values of the force time histories for all the datasets, more than 90%. It can be concluded that the maximum mean of the normalized error, obtained through Box-Whisker plot and Gaussian distribution of normalized error, associated with unseen data is about 10% and 3% for the fast and slow cyclic tests, respectively. In recapitulation, it brings to an end that the stacked Bi-CuDNNLSTM layer implemented in this study has a myriad of benefits in reducing the time and experimental costs for conducting new fast and slow cyclic tests in the future and results in a fast and accurate insight into hysteretic behavior of bridge piers.