• 제목/요약/키워드: Unbalanced distribution system

검색결과 117건 처리시간 0.025초

Analysis on How to Locate the Maximum Line Voltage to Hull in Steady State on the Vector Diagram Onboard Vessels

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.966-973
    • /
    • 2011
  • Power distribution onboard vessel is typically configured as ungrounded system due to the ability to continuously supply electric power even when an earth fault occurs. The impedance connections between 3 phase power lines and hull cause the line-to-hull voltages to become unstable and increased in case the impedances are unbalanced, bringing the situation susceptible to electric shock and deterioration of insulation material. Also the line-to-hull voltage can reach to a certain maximum value in the steady state depending on the distributed capacitances and grounding resistances between lines and hull. This study suggests how to find and calculate the maximum line-to-hull voltage in view of magnitude and phase angle based on the vector diagram.

웨이블릿 변환을 이용한 고장과 Variation의 유형 구분 알고리즘 개발 (Development of the Algorithm for Discriminating Faults from Variation using Wavelet Transform)

  • 서훈철;이순정;김철환
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1460-1466
    • /
    • 2011
  • This paper proposes the algorithm for discriminating faults from the variation due to the operation of non-linear components to prevent the mal-operation of protection relay in the distribution system. An IEEE 13 node test feeder is modeled to analyze the characteristics of the fault and each variation using EMTP-RV. Simulations with various operating conditions of transformers, non-linear loads, and unbalanced loads are performed using the test feeder model. Based on simulation results, the wavelet transform is adopted to analyze the current waveforms from the faults and variations to find out the differences between them and the algorithm for discriminating faults from the variation is proposed. The proposed algorithm is verified by using the current waveforms simulated in the KEPCO's distiribution system and IEEE 13 node test feeder.

전압불평형율의 현장측정 및 분석 (Field Measurement and Analysis of Voltage Unbalance Factor)

  • 정종호;박영진;이은웅;김종겸
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.41-46
    • /
    • 2005
  • Most of LV customer have applied the 3-phase four wire system distribution system because it has advantage of supplying both of 1-phase & 3-phase loads simultaneously. Due to its structural simplicity, it is more convenient for use rather than the conventional separated scheme. But voltage unbalance more commonly emerges in individual customer loads due to phase load unbalance, especially where, single-phase power loads are used. Voltage unbalance factor(VUF) represents the loss of symmetry in the supply(magnitude and angle). It leads some problems such as de-rating or power losses. In this paper, voltage and current waveform in the actual fields have been measured and analyzed in relation with internationally allowable voltage unbalance limits.

배전계통 유도장해 해석을 위한 불평형 선로 고장계산 (Unbalanced line fault study for inductive disturbance analysis of distribution system)

  • 류정현;김건중;임종호;박헌경;김태균;김용학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.154-157
    • /
    • 2003
  • The exicting short circuit analysis calculate the current with the balance system and unbalance fault impedance. That method deal with only bus fault with the consequence that line fault study is irrational. This paper propose the line fault, shunt unbalance and series unbalance analysis method using template concept that is one of advantages for OOP(Object-Oriented Programming). This method is possible to use for calculating inductive distrubance.

  • PDF

DC 전력망 구축을 위한 VPI 제어 기반 MMC-HVDC 시스템의 순환전류 제어 기법 (Circulating Current Control of a Modular Multi-level Converter(MMC)-HVDC System based on VPI(Vector-PI) Control for DC Power Network)

  • 김시환;이준선;조영표;김래영
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.263-269
    • /
    • 2017
  • This paper proposes a novel circulating current control method for an MMC-HVDC system based on Vector PI control. The method can suppress second-order harmonics of the circulating currents under balanced and unbalanced grid conditions. The proposed method is robust to grid frequency variation. The effectiveness of the proposed method is verified through frequency response and time domain simulation.

Design and Implementation of Instantaneous Power Estimation Algorithm for Unified Power Conditioner

  • S., Sindhu;M.R., Sindhu;Nambiar, T.N.P.
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.815-826
    • /
    • 2019
  • This paper discusses a simple control approach for a Unified Power Conditioner (UPC) system to achieve power quality compensation at the point of common coupling in distribution systems. The proposed Instantaneous Power Estimation Algorithm (IPEA) for shunt and series active power filters uses a simple mathematical concept that reduces the complexity in the design of the controller. The performance of a UPC is verified with a system subjected to voltage distortions, sags/swells and unbalanced loads using MATLAB/SIMULINK. The simulation study shows that a UPC with the proposed control algorithm can effectively compensate for voltage and current harmonics, unbalance and reactive power. The control algorithm is experimentally implemented using dSPACE DS1104 and its effectiveness has been verified.

Yg-Yg 3상 내철형 변압기의 영상분 임피던스 분석 (Zero Sequence Impedance of Yg-Yg Three Phase Core Type Transformer)

  • 조현식;조성우;신창훈;차한주
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.940-945
    • /
    • 2016
  • In this paper, zero sequence equivalent circuit of Yg-Yg three phase core-type transformer is analyzed. Many problems by iron core structure of the three phase transformer due to asymmetric three phase lines, which includes line disconnection, ground fault, COS OFF, and unbalanced load are reported in the distribution system. To verify a feasibility of zero sequence impedance of Yg-Yg type three phase transformer, fault current generation in the three phase core and shell-type Yg-Yg transformer is compared by PSCAD/EMTDC when single line ground fault is occurred. As a result, shell-type transformer does not affect the flow of fault current, but core-type transformer generate an adverse effect by the zero sequence impedance. The adverse effect is explained by the zero sequence equivalent circuit of core-type transformer and Yg-Yg type three phase core-type transformer supplies a zero sequence fault current to the distribution system.

Energy Saving Potential and Indoor Air Quality Benefits of Multiple Zone Dedicated Outdoor Air System

  • Lee, Soo-Jin;Jeong, Jae-Weon
    • 국제초고층학회논문집
    • /
    • 제8권1호
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to evaluate the indoor air quality (IAQ) and energy benefits of a dedicated outdoor air system (DOAS) and compare them with a conventional variable air volume (VAV) system. The DOAS is a decoupled system that supplies only outdoor air, while reducing its consumption using an enthalpy wheel. The VAV system supplies air that is mixed outdoor and transferred indoor. The VAV has the issue of unbalanced ventilation in each room in multiple zones because it supplies mixing air. The DOAS does not have this problem because it supplies only outdoor air. That is, the DOAS is a 100% outdoor air system and the VAV is an air conditioning system. The transient simulations of carbon dioxide concentration and energy consumption were performed using a MATLAB program based on the thermal loads from the model predicted by the TRNSYS 18 program. The results indicated that when the air volume is large, such as in summer, the distribution of air is not appropriate in the VAV system. The DOAS however, supplies the outdoor air stably. Moreover, in terms of annual primary energy consumption, the DOAS consumed approximately 40% less energy than the VAV system.

실계통 345kV 지중송전선 대칭좌표 임피던스의 해석 (Analysis of Sequence Impedances of 345kV Cable Transmission Systems)

  • 최종기;안용호;윤용범;오세일;곽양호;이명희
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

가공 오차를 고려한 스핀들 시스템의 동적 특성 해석 (Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance)

  • 곽규열;김학운;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF