• 제목/요약/키워드: Ulva pertusa kjelmann

검색결과 2건 처리시간 0.015초

고압액화공정을 이용한 구멍갈파래의 발효용 알코올 당화수율 증진 (Enhancement of Saccharification Yield of Ulva pertusa kjellman for Ethanol Production through High Temperature Liquefaction Process)

  • 한재건;오성호;최운용;권정웅;서현범;정경환;강도형;이현용
    • KSBB Journal
    • /
    • 제25권4호
    • /
    • pp.357-362
    • /
    • 2010
  • Green alga, Ulva pertusa kjelmann has been known to be one of the largest pollutants in Korea. Therefore, the efficient pretreatment processes have been required to improve the yields of fermentable sugar. The optimal pretreatment conditions were determined to be $195^{\circ}C$ for 15 min. The sugar yield of glucose and xylose were estimated as 20.5%, and 5.0% respectively, based on theoretical yields. However solid residues were estimated enzymatic digestibility of 90-95% with cellulase loading of 15 FPU/g glucan. This process was proved to generate the low concentration of Hydroxy-Methyl-Furfural (51 ppm), which resulted in ethanol production with 95% of the maximum conversion yield from glucose in the culture of Saccharomyces cerevisiae (ATCC, 24858). This study showed that Ulva pertusa kjellmann can be used as a bioetahnol resource using the high temperature liquefaction process.

구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진 (Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production)

  • 최운용;이춘근;안주희;서용창;이상은;정경환;강도형;조정섭;최근표;이현용
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.400-406
    • /
    • 2011
  • This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.