• Title/Summary/Keyword: Ultraviolet light-emitting diode

Search Result 45, Processing Time 0.028 seconds

산화아연 나노로드기반 광검출소자 제작 및 특성

  • Go, Yeong-Hwan;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.2-189.2
    • /
    • 2013
  • 1차원 산화아연 나노구조물은 광대역 에너지 밴드갭(~3.3 eV)과 독특한 물리적 특성을 갖고 있어, 전계효과 트랜지스터(field effect transistor), 발광다이오드(light emitting diode), 자외선 광검출기 (ultraviolet photodetector) 및 태양전지(photovoltaic cell)에 널리 이용되고 있다. 특히, 1차원 산화아연 나노구조물은 직접천이형 에너지 밴드갭(direct bandgap)을 갖고 있으며, 빛으로부터 여기된 전자가 1차원 나노구조물을 통해 향상된 이동경로를 제공할 수 있어서 차세대 자외선 광검출기 응용에 대한 연구가 활발히 진행되고 있다. 한편, 수열합성법(hydrothermal method)을 통해서 1차원 산화아연 나노구조물을 비교적 간단하고 저온공정을 통해서 합성할 수 있는데, 이를 광검출기 소자구조에 응용에서 양전극에 연결하기 위해서는 복잡하고 정교한 공정이 필요하다. 이에 본 연구에서는 수열합성법을 통해 합성된 산화아연 나노로드가 포함된 에탄올 용액을 금(Au) 패턴에 drop-casting을 통해서 간단한 방법으로 metal-semiconductor-metal (MSM) 광검출기를 제작하여 광반응 특성을 분석하였다. 또한 염료를 통해 가시광을 흡수하여 광전류(photocurrent)를 발생시킬 수 있도록 염료를 흡착한 산화아연 나노로드를 이용하여 같은 구조의 MSM 광검출기를 제작하여 가시광에 대한 광반응 특성을 관찰하였다.

  • PDF

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Effect of growth temperature on properties of AlGaN grown by MOCVD

  • 김동준;문용태;송근만;박성주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.111-111
    • /
    • 2000
  • 최근 질화물 반도체를 이용한 단파장 laser diode (LD)와 ultraviolet light emitting diode (LED)에 관한 관심의 증가로 인하여 AlGaN의 성장에 관한 연구가 많이 진행되고 있다. Metalorganic chemical vapor deposition (MOCVD)법을 이용한 AlGaN 성장에 있어서는 Al의 전구체로 널리 사용되고 있는 trimethylaluminum (TMAl)과 암모니아와의 기상에서의 adduct 형성을 억제하기 위하여 주로 저압에서 성장을 하거나 원료 가스의 유속을 증가시키는 방법으로 연구가 되고 있다. 또한, AlN의 경우 GaN보다 녹는점이 매우 높기 때문에 일반적으로 Al을 포함하는 질화물 반도체의 성장에 있어서는 GaN보다 녹는점이 매우 높기 때문에 일반적으로 Al을 포함하는 질화물 반도체의 성장에 있어서는 GaN 성장 시보다 높은 온도에서 성장이 이루어지고 있다. MOCND법을 이용하여 AlGaN를 성장시키는 대부분의 연구들은 100$0^{\circ}C$ 이상의 고온에서의 성장 온도가 AlGaN특성에 미치는 영향에 대한 것으로 국한되고 있다. 그러나, InGaN/GaN multiple quantum wells (MQWs) 구조의 LD나 LED를 성장시키는 경우 In의 desorption을 억제하기 위하여 MQWs층 위에 저온에서 AlGaN를 성장하는 데 있어서 AlGaN의 성장 온도를 500-102$0^{\circ}C$로 변화시키면서 AlGaN의 성장거동을 고찰하였다. GaN는 사파이어 기판을 수소분위기하에서 고온에서 가열한 후 저온에서 GaN를 이용한 핵생성층을 성장하고 102$0^{\circ}C$의 고온에서 1.2$\mu\textrm{m}$정도의 두께로 성장하였다. AlGaN는 고온에서 성장된 GaN 위에 200Torr의 성장기 압력 하에서 trimethylgallium (TMGa)과 TMAl의 유속을 각각 70 $\mu$mol/min 으로 고정한 후 성장온도만을 변화시키며 증착하였다. 성장 온도가 낮아짐에 따라 AlGaN의 표면거칠기가 증가하고, 결함과 관련된 포토루미네슨스가 현저히 증가하는 것이 관찰되었다. 그러나, 성장온도가 50$0^{\circ}C$정도로 낮아진 경우에 있어서는 표면 거칠기가 다시 감소하는 것이 관찰되었다. 이러한 현상은 저온에서 표면흡착원자의 거동에 제한이 따르기 때문으로 생각되어진다. 또한, 성장 온도가 낮아짐에 따라 AlGaN의 성장을 저해하기 때문으로 판단된다. 성장 온도 변화에 따라 성장된 V의 구조적 특성 및 표면 거칠기 변화를 관찰하여 AlGaN의 성장 거동을 논의하겠다.

  • PDF

Preparation of Ba2Mg(PO4)2:Eu Phosphors and Their Photoluminescence Properties Under UV Excitation (Ba2Mg(PO4)2:Eu 형광체의 합성과 자외선 여기하의 발광특성)

  • Tae, Se-Won;Jung, Ha-Kyun;Choi, Sung-Ho;Hur, Nam-Hwi
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.623-627
    • /
    • 2008
  • For possible applications as luminescent materials for white-light emission using UV-LEDs, $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphors were prepared by a solid state reaction. The photoluminescence properties of the phosphor were investigated under ultraviolet ray (UV) excitation. The prepared phosphor powders were characterized to from a single phase of a monoclinic crystalline structure by a powder X-ray diffraction analysis. In the photoluminescence spectra, the $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphor showed an intense emission band centered at the 584 nm wavelength due to the f-d transition of the $Eu^{2+}$ activator. The optimum concentration of $Eu^{2+}$ activator in the $Ba_2Mg(PO_4)_2$ host, indicating the maximum emission intensity under the excitation of a 395 nm wavelength, was 5 at%. In addition, it was confirmed that the $Eu^{2+}$ ions are substituted at both $Ba^{2+}$ sites in the $Ba_2Mg(PO_4)_2$ crystal. On the other hand, the critical distance of energy transfer between $Eu^{2+}$ ions in the $Ba_2Mg(PO_4)_2$ host was evaluated to be approximately 19.3 A. With increasing temperature, the emission intensity of the $Ba_2Mg(PO_4)_2$:Eu phosphor was considerably decreased and the central wavelength of the emission peak was shifted toward a short wavelength.

Plant Growth and Ascorbic Acid Content of Spinacia oleracea Grown under Different Light-emitting Diodes and Ultraviolet Radiation Light of Plant Factory System (식물공장시스템의 발광다이오드와 UVA 광원 하에서 자란 시금치 생육 및 아스코르브산 함량)

  • Park, Sangmin;Cho, Eunkyung;An, Jinhee;Yoon, Beomhee;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood (식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향)

  • Baek, Ji Hye;Lee, So-Young;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.205-212
    • /
    • 2020
  • Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome this problem. Edible coatings that are also biodegradable and biocompatible have been discussed as one of the applicable solutions. These coatings can actually help to maintain seafood quality by inhibiting the growth of microorganisms and delaying the loss of moisture. This paper presents the effects of various natural bio-polymers, antimicrobial substances and physical sterilization techniques such as gamma irradiation, ultraviolet (UV) sterilization, and light-emitting diode (LED) sterilization on seafood coatings.

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet (자외선 여기용 청색 및 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).