• Title/Summary/Keyword: Ultrathin endoscope

Search Result 2, Processing Time 0.016 seconds

Measurement and Analysis of Image Brightness in Fiber-optic Imageguide for Ultrathin Endoscope (미세내시경용 광섬유 영상가이드의 영상광도 측정 및 분석)

  • 이봉수
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.263-268
    • /
    • 2002
  • The image quality of imageguide depends on the structure, material, length of microfibers and the phenomena such as cross-talk and leaky ray between adjacent fibers. These Parameters should be considered as important factors in the image transmission qualify of fibers. However it is considered to be very difficult to assess all the parameters in a consistent way Therefore. two image characteristics, image resolution and image brightness are measured and analyzed to determine the image quality of imageguide. But the exact methods to measure two image characteristics of imageguide are not reported. In this study, the image brightness of imageguide for ultrathin endoscope is determined by measuring of the numerical aperture. the packing fraction and the attenuated power ratio of imageguide. Especially it is possible to obtain more exact results from measuring the numerical aperture of whole image guide than those from theoretical calculation of the single microfiber in an image guide. The image brightness of the image guide which has $3.1\mu m$ microfibers is about 37% less than that with $4.1\mu m$ microfibers.

Evaluation of Image qualify in Super-resolution Image Guide for Ultrathin Endoscope (미세 내시경용 고 분해능 영상가이드의 성능 평가)

  • Choi W.Y.;Oh C.H.;Lee B.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.233-237
    • /
    • 2000
  • In general. fiber-optic medical endoscopes are made from glass step index (SI) fibers. These endoscopes have limitations in both image quality and mechanical properties. In particular. the image resolution of the SI endoscopes is limited to about 5$\mu$m. In this study the image resolution of plastic graded index (GRIN) super-resolution image guides with pixel sizes from 7 to 2.5 $\mu$m were measured and compared with those of 91ass SI image guides. There is an improvement in resolution of the plastic GRIN image guides as the microfiber diameter is reduced from 7 $\mu$m to 2.5 $\mu$m. The measured resolution of plastic GRIN image guide with 2.5 $\mu$m microfibers is more than a factor of two higher than that of g1ass SI image guide with 5$\mu$m microfibers. This new design of optical systems could have a major impact on a wide array of future optical systems used in defense. industrial, and medical applications.

  • PDF