• 제목/요약/키워드: Ultrathin c-Si

검색결과 18건 처리시간 0.032초

Graphene formation on 3C-SiC ultrathin film on Si substrates

  • Miyamoto, Yu;Handa, Hiroyuki;Fukidome, Hirokazu;Suemitsu, Maki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.9-10
    • /
    • 2010
  • Since the discovery of graphene by mechanical exfoliation from graphite[1], various fabrication methods are available today such as chemical exfoliation, epitaxial graphene on SiC substrates, etc. In view of industrialization, the mechanical exfoliation method may not be an option. Epitaxial graphene on SiC substrates, in this respect, is by far more practical because the method consists of conventional thermal treatments familiar to semiconductor industry. Still, the use of the SiC substrate itself, and hence the incompatibility with the Si technology, lessens the importance of this technology in its future industrialization. In this context, we have tackled the problem of forming graphene on Si substrates (GOS). Our strategy is to form an ultrathin (~80 nm) SiC layer on top of a Si substrate, and to graphitize the top SiC layers by a vacuum annealing. We have actually succeeded in forming the GOS structure [2,3,4]. Raman-scattering microscopy indicates presence of few-layer graphene (FLG) formed on our annealed SiC/Si heterostructure, with the G ($1580\;cm^{-1}$) and the G'($2700\;cm^{-1}$) bands, both related to ideal graphene, clearly observed. Presence of the D ($1350\;cm^{-1}$) band indicates presence of defects in our GOS films, whose elimination remains as a challenge in the future. To obtain qualified graphene films on Si substrate, formation of qualified SiC films is crucial in the first place, and is achieved by tuning the growth parameters into a process window[5]. With a potential for forming graphene films on large-scale Si wafers, GOS is a powerful candidate as a key technology in bringing graphene into silicon technology.

  • PDF

Ag 나노입자와 나노홀 배열구조를 이용한 초박형 단결정 Si 태양전지의 광흡수 증진 (Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays)

  • 김수정;조윤애;손아름;김동욱
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.64-67
    • /
    • 2016
  • We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10-${\mu}m$-thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as $34.96mA/cm^2$.

고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장 (Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy)

  • 최치규;강민성;문종;현동걸;김건호;이정용
    • 한국재료학회지
    • /
    • 제8권2호
    • /
    • pp.165-172
    • /
    • 1998
  • 초고진공에서 in situ 고상 에피택셜 방법으로 Si(111)기판 위에 에피택셜 $CoSi_2$ 초박막과 $Si/epi-CoSi_2/Si$(111) 의 이중 이종에피택셜 구조를 성장 시켰다. 2-MeV $^4He^{++}$ 이온 후방산란 분광기와 X-선 회절분석기 및 고분해능 투과전자 현미경을 이용하여 성장된 $CoSi_2$$Si/epi-CoSi_2/Si$(111)의 상, 조성, 결정성 그리고 계면의 미세구조를 조사하였다. 실온에서 증착된 Co 박막은 texture 구조를 갖는 Stransky-Krastanov 성장 모드를 나타내었다. 실온에서 Si(111)-$7\times{7}$ 기판 위에 Co를 $50\AA$ 증착한 후 $700^{\circ}C$로 10분간 in situ 열처리했을 때 초박막 A-type $CoSi_2$상이 성장되었고, 정합상관계는 $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002)였으며, 편의각은 없었다. A-type $CoSi_2$/Si(111)계면은 평활하고 coherent 하였다. 양질의 epi-Si/epi-$CoSi_2$(A-type)/Si(111)구조는 Co/Si(111)계를 $700^{\circ}C$로 10분간 in situ로 열처리한 후 기판을 $500^{\circ}C$로 유지하면서 Si을 증착하였을 때 형성되었다.

  • PDF

Synthesis and Photocatalytic Properties of Thermally Stable Metal-Oxide Hybrid Nanocatalyst with Ultrathin Oxide Encapsulation

  • Naik, Brundabana;Moon, Song Yi;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.317.2-317.2
    • /
    • 2013
  • Ultrathin oxide encapsulated metal-oxide hybrid nanocatalysts have been fabricated by a soft chemical and facile route. First, SiO2 nanoparticles of 25~30 nm size have been synthesized by modified Stobber's method followed by amine functionalization. Metal nanoparticles (Ru, Rh, Pt) capped with polymer/citrate have been deposited on functionalized SiO2 and finally an ultrathin layer of TiO2 coated on surface which prevents sintering and provides high thermal stability while maximizing the metal-oxide interface for higher catalytic activity. TEM studies confirmed that 2.5 nm sized metal nanoparticles are well dispersed and distributed throughout the surface of 25 nm SiO2 nanoparticles with a 3-4 nm TiO2 ultrathin layer. The metal nanoparticles are still well exposed to outer surface, being enabled for surface characterization and catalytic activity. Even after calcination at $600^{\circ}C$, the structure and morphology of hybrid nanocatalysts remain intact confirm the high thermal stability. XPS spectra of hybrid nanocatalyst suggest the metallic states as well as their corresponding oxide states. The catalytic activity has been evaluated for high temperature CO oxidation reaction as well as photocatalytic H2 generation under solar simulation. The design of hybrid structure, high thermal stability, and better exposure of metal active sites are the key parameters for the high catalytic activity. The maximization of metal-TiO2 interface interaction has the great role in photocatalytic H2 production.

  • PDF

비정질 실리콘 태양전지의 p-a-SiC:H/i-a-Si:H 계면에 삽입된 P형 미세 결정 실리콘의 완충층 효과에 대한 수치 해석 (Numerical Simulation on Buffering Effects of Ultrathin p-${\mu}c$-Si:H Inserted at the p-a-SiC:H/i-a-Si:H Interface of Amorphous Silicon Solar Cells)

  • 이창현;임굉수
    • 태양에너지
    • /
    • 제20권1호
    • /
    • pp.11-20
    • /
    • 2000
  • To get more insight into the buffering effects of the p-${\mu}c$-Si:H Inserted at the p-a-SiC:H/i-a-Si:H interface, we present a systematic numerical simulation using Gummel-Schafetter method. The reduced recombination loss at the p/i interface due to a constant bandgap buffer is analysed in terms of the variation of the p/i Interface region with a short lifetime and the characterisitics of the buffer such as mobility bandgap, acceptor concentration, and D-state density. The numerical modeling on the constant bandgap buffer demonstrates clearly that the buffering effects of the thin p-${\mu}c$-Si:H originate from the shrinkage of highly defective region with a short lifetime in the vicinity of the p/i interface.

  • PDF

미세 내시경용 고 분해능 영상가이드의 성능 평가 (Evaluation of Image qualify in Super-resolution Image Guide for Ultrathin Endoscope)

  • 최원영;오창현;이봉수
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권3호
    • /
    • pp.233-237
    • /
    • 2000
  • 현재 의료용으로 사용되고 있는 광섬유를 이용한 내시경은 굴절률이 다른 두 가지 유리로써(Step Index SI) 제작되고 있다. 이와 같은 내시경은 취급에 주의하여야 하는 근본적인 재료상의 문제점 외에도 영상 가이드의 최고 분해능이 5$\mu$m으로 제약되고 있는 실정이다. 본 연구에서는 플라스틱을 이용하여 고 영상 분해능($7\mu\;m\~2.5\mu$m)을 가진 미세 내시경(Ultrathin Endoscope)용 영상 가이드의 분해능을 측정하였다. 그 각각의 플라스틱 광섬유 굴절률은 광섬유 중심으로부터 외곽까지 점차 감소하는 특성 (Graded Index GRIN)을 가지고 있다. 플라스틱 GRIN 영상가이드의 분해능 측정 결과. 마이크로 광섬유의 지름이 작아질수록 그 분해능이 증가되었고, 유리를 이용한 SI 영상 가이드 분해능과의 비교 연구 결과, 2배의 분해능을 가진 (2.5$\mu$m) 플라스틱 GRIN 영상가이드 제작이 가능함을 보였다. 이와 같은 플라스틱 GRIN 광섬유 다발은 의료 분야뿐 아니라 국방 및 산업분야의 새로운 광학적 설계에 많은 영향을 줄 것으로 기대된다.

  • PDF

ECR 산소 플라즈마에 의한 $SiO_2$ 박막의 성장 거동 및 전기적 특성 (Growth and Electrical Characteristics of Ultrathin $SiO_2$ Film Formed in an Electron Cyclotron Resonance Oxygen Plasma)

  • 안성덕;이원종
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.371-377
    • /
    • 1995
  • Silicon oxide films were grown on single-crystal silicon substrates at low temperatures (25~205$^{\circ}C$) in a low pressure electron cyclotron resonance (ECR) oxygen plasma. The growth rate of the silicon oxide film increased as the temperature increased or the pressure decreased. Also, the thickness of the silicon oxide film increased at negative bias voltage, but not changed at positive bias voltage. The growth law of the silicon oxide film was approximated to the parabolic form. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were studied using Al/SiO2/p-Si MOS structures. For a 10.2 nm thick silicon oxide film, the leakage current density at the electric field of 1 MVcm-1 was less than 1.0$\times$10-8Acm-2 and the breakdown field was higher than 10 MVcm-1. The flat band voltage of Al/SiO2/p-Si MOS capacitor was varied in the range of -2~-3 V and the effective dielectric constant was 3.85. These results indicate that high quality oxide films with properties that are similar to those of thermal oxide film can be fastly grown at low temperature using the ECR oxygen plasma.

  • PDF

Electrical Stress in High Permittivity TiO2 Gate Dielectric MOSFETs

  • Kim, Hyeon-Seag;S. A. Campbell;D. C. Gilmer
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권10호
    • /
    • pp.94-99
    • /
    • 1998
  • Suitable replacement materials for ultrathin SiO2 in deeply scaled MOSFETs such as lattice polarizable films, which have much higherpermittivities than SiO2, have bandgaps of only 3.0 to 4.0 eV. Due to these small bandgaps, the reliability of these films as a gate insulator is a serious concern. Ramped voltage, time dependent dielectric breakdown, and hot carrier effect measurements were done on 190 layers of TiO2 which were deposited through the metal-organic chemical vapor deposition of titanium tetrakis-isopropoxide (TTIP). Measurements of the high and low frequency capacitance indicate that virtually no interface state are created during constant current injection stress. The increase in leakage upon electrical stress suggests that uncharged, near-interface states may be created in the TiO2 film near the SiO2 interfacial layer that allow a tunneling current component at low bias.

  • PDF

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • 성시열;황진수
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.