• 제목/요약/키워드: Ultrasound Thermography

검색결과 30건 처리시간 0.024초

초음파 서모그라피를 이용한 빠른 PCB 결함 검출 (Fast Defect Detection of PCB using Ultrasound Thermography)

  • 조재완;서용칠;정승호;김승호;정현규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권2호
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

초음파 적외선 열화상을 이용한 접합부의 미세균열 검출 연구 (Study on the Micro Crack Detection in Joints by Using Ultrasound Infrared Thermography)

  • 박희상;최만용;박정학;이승석;허용학;이보영;김재성
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.162-169
    • /
    • 2012
  • 본 논문은 초음파 적외선 열화상과 위상잠금 방법을 이용하여 이종금속용접(STS304 and SA106 Gr. b)된 파이프의 응력부식균열 결함을 검출하였다. 초음파 가진장치는 출력 250 Watt, 주파수 20 kHz이었다. 실험 결과 이종금속용접부의 파이프 내부에 위치한 균열을 적외선 열화상을 이용하여 검출할 수 있었다. 실제 PT검사를 통하여 배관 내부의 균열이 하나가 아닌 일정한 범위 안에 하나 이상의 크랙이 존재하여 열화상 이미지 상에 넓은 범위의 hot spot 이미지를 만들어 냈음을 파악할 수 있었다. 또한 기존 기술로 검출이 용이하지 못한 마이크로 폭의 미세균열을 검출할 수 있었다. 또한, 초음파탐상기술은 $10\;{\mu}m$ 미세크랙의 폭을 갖은 균열을 쉽게 검출하지 못하였다. 그러나 초음파 적외선 열화상 기술은 결함 검출하였다.

자동차 엔진블럭의 미세크랙 검출을 위한 초음파 서모그래피 기법에 관한 연구 (Ultrasound Thermography Technique for Detecting Micro Defects in Vehicle Engine Block)

  • 김성현;김재열;최승현
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.443-446
    • /
    • 2013
  • 적외선 열화상 기술은 넓은 면적을 동시에 검사할 수가 있고, 크랙 또는 박리와 같은 결함을 실시간으로 검출할 수 있으며, 일반적으로 적외선 열화상은 열복사로 피사체에서 방사되는 적외선 영역을 열화상 카메라를 통하여 가시적인 화상을 만들어 주는 기술이며 모든 물체의 분자가 열에 의해 교란되어 발생하는데 분자 운동은 물체의 온도가 올라가면 증가하고 온도가 내려가면서 감소한다. 본 연구에서는 초음파 서모그래피 기술과 기법의 적용과 타당성을 확인하여 엔진블록의 자동차산업 전반에 수요가 많은 대상체로 하였고, 결함 부위에 비파괴 신뢰성평가에 대한 실험을 수행하여 기술하였다.

초음파-적외선 열화상 기법에 의한 피로균열 검출에 있어 발열 메커니즘 분석 (Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography)

  • 최만용;이승석;박정학;김원태;강기수
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.10-14
    • /
    • 2009
  • 초음파 적외선 비파괴 열화상 검사기술의 발열 메커니즘은 정확히 규명되지 않았으나, 열-기계 연성효과와 결함 계면 사이의 마찰효과가 주요한 원인인 것으로 추정되고 있다. 본 논문에서는 피로균열을 갖는 알루미늄 합금 시험편에서 결함을 검출하고, 실험조건으로부터 각각의 메커니즘에 따라 온도 변화를 수치 예측하였다. 시험결과와 수치예측 결과로부터 발열의 주요한 원인이 마찰이라는 것을 밝혔다.

초음파 서모그라피를 이용한 개방 균열의 크기 측정 (A Measurement of Size of the Open Crack using Ultrasound Thermography)

  • 조재완;서용칠;정승호;정현규;김승호
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.218-223
    • /
    • 2007
  • The dissipation of high-power ultrasonic energy at the faces of the defect causes an increase in temperature. It is resulted from localized selective heating in the vicinity of cracks because of the friction effect. In this paper the measurement of size and direction of crack using UET(Ultrasound Excitation Thermography) is described. The ultrasonic pulse energy is injected into the sample in one side. The hot spot, which is a small area around the crack tip and heated up highly, is observed. The hot spot, which is estimated as the starting point of the crack, is seen in the nearest position from the ultrasonic excitation point. Another ultrasonic pulse energy is injected into the sample in the opposite side. The hot spot, the ending point of the crack, is seen in the closest distance from the injection point also. From the calculation of the coordinates of both the first hot spot and the second hot spot observed, the size and slope of the crack is estimated. In the experiment of STS fatigue crack specimen(thickness 14mm), the size and the direction of the crack was measured.

초음파 펄스 서모그라피를 이용한 세라믹 전열 판의 결함 검출 (Defect Detection of Ceramic Heating Plate Using Ultrasound Pulse Thermography)

  • 조재완;서용칠;정승호;김승호;정현규
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.259-263
    • /
    • 2006
  • The applicability of UPT (Ultrasound Pulse Thermography) for real-time defect detection of the ceramic heating plate is described. The ceramic heating plate with superior insulation and high radiation is used to control the water temperature in underwater environment. The underwater temperature control system can be damaged owing to the short circuit, which resulted from the defect of the ceramic heating plate. A high power ultrasonic energy with pulse duration of 280 ms was injected into the ceramic heating plate in the vertical direction. The ultrasound excited vibration energy sent into the component propagate inside the sample until they were converted to the heat in the vicinity of the defect. Therefore, an injection of the ultrasound pulse wave which results in heat generation, turns the defect into a local thermal wave transmitter. Its local emission is monitored and recorded via the thermal infrared camera at the surface which is processed by image recording system. Measurements were Performed on 4 kinds of samples, composed of 3 intact plates and the defect plate. The observed thermal image revealed two area of crack in the defective ceramic heating plate.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

초음파 적외선열화상 기법을 적용한 모터 코어의 신뢰성 평가 (Reliability Evaluation of a Motor Core Applied Ultrasound Infrared Thermography Technique)

  • 정윤수;노치성;이경일;김재열
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.60-66
    • /
    • 2016
  • This study used an ultrasound infrared thermography technique to detect issues in the motor core of typical power equipment. The current defect inspection method of the motor core is often incomplete (due to the limits of visual inspection) and thus the reliability of the motor core is reduced. Therefore, in this study, experiments were carried out to increase the reliability of the test by using an ultrasonic infrared thermal non-destructive inspection method to image the motor core. The ambient temperature of the experimental system was maintained at $25^{\circ}C$. Experiments were carried out to examine a damaged motor core and a defect-free motor core. Experimental results confirm the technique clearly detected defects in the motor core, thereby confirming the possibility of using this technique in the field.