• Title/Summary/Keyword: Ultrasound Mode

Search Result 125, Processing Time 0.026 seconds

Low-frequency Ultrasound Enhanced Transdermal Drug Delivery Across Rat Skin

  • Lee, Hwa-Jin;Kim, Jong-Youl;Park, Jin-Nam;Shin, Young-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.365-368
    • /
    • 2007
  • The primary aim of this study was to investigate the enhancement effect of low-frequency ultrasound on skin permeation. In vitro permeation experiments were performed using Franz modified diffusion cells with ketoprofen as model drug. The effect of various ultrasound factors-ultrasound application mode (continuous mode and discontinuous mode), ultrasound intensity (0.26 $W/cm^2$, and 0.29 $W/cm^2$) and duty cycle (3%, 16%, 50%, and 83%) were studied. The highest permeation was observed at 0.29 $W/cm^2$ intensity, 50% duty cycle, and discontinuous mode. The result suggested the feasibility of low frequency ultrasound application for the phonophoretic transdermal drug delivery system.

Introduction to Knobology Focusing on B Mode and Doppler Setting in Musculoskeletal Ultrasound (근골격계 초음파의 기판 조절 입문: B Mode와 Doppler)

  • Min, Kyunghoon
    • Clinical Pain
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • Musculoskeletal ultrasound has evolved as the essential tool to diagnose and guide intervention procedures in people with neuromusculoskeletal conditions. Image optimization and understanding device operations are core components for ultrasound guided intervention procedure training. All ultrasound machines share the common operative features and there are various buttons for the features in the device control panel. Ultrasound "knobology" refers to the thorough understanding of imaging optimization. This review addressed basic information for the transducers, depth setting, gain and focus control, different modes focusing on brightness and doppler modes.

Exploring and calibrating local curvature effect of cortical bone for quantitative ultrasound (QUS)

  • Chen, Jiangang;Su, Zhongqing;Cheng, Li;Ta, De-An
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.501-518
    • /
    • 2013
  • Apart from thinning of cortical layers, the local bone curvature, varying along bone periphery, modulates ultrasound waves as well, which is however often underestimated or overlooked in clinical quantitative ultrasound (QUS). A dedicated three-dimensional finite element modelling technique for cortical bones was established, for quantitatively exploring and calibrating the effect of local curvature of cortical bone on ultrasound. Using a correlation-based mode extraction technique, high-velocity group (HVG) and low-velocity group (LVG) wave modes in a human radius were examined. Experimental verification using acrylic cylinders and in vitro testing using a porcine femur were accomplished. Results coherently unravelled the cortical curvature exerts evident influence on bone-guided ultrasound when RoC/${\lambda}$ <1 for HVG mode and RoC/${\lambda}$ <2 for LVG mode (RoC/${\lambda}$: the ratio of local bone curvature radius to wavelength); the sensitivity of LVG mode to bone curvature is higher than HVG mode. It has also been demonstrated the local group velocity of an HVG or LVG mode at a particular skeletal site is equivalent to the velocity when propagating in a uniform cylinder having an outer radius identical to the radius of curvature at that site. This study provides a rule of thumb to compensate for the effect of bone curvature in QUS.

Skin Permeation Effects of Meloxicam Gel on Ultrasound Parameters by Phonophoresis (초음파의 매개변수에 따른 Meloxicam Gel의 경피투과 촉진효과)

  • Choi, Sug-Ju;Yoon, Se-Won;Jung, Dae-In;Kim, Young-Il;Jeong, Jin-Gyu;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.4 no.1
    • /
    • pp.49-61
    • /
    • 2006
  • This study conducted the following experiment to examine and compare transdermal permeation effects according to parameters of ultrasound and physiochemical characteristics of meloxicam. Permeation by ultrasound among these experimental drugs was relatively higher and it was involved in COX-2 inhibition unlike other drugs. Recently use of oral agents has been rapidly increased, but it was not generalized to transdermal agent and this study selected meloxicam that transdermal permeation research using ultrasound was not performed and conducted transdermal permeation experiment with skin of hairless mouse and analyzed permeation with HPLC. It made gel first and analyzed permeation depending on frequency and intensity of ultrasound of meloxicam with the same experimental procedures as the above experiment. The results of this study can be summarized as follows. Transdermal permeation by ultrasound frequency was higher in 1.0 MHz and it was higher as intensity increased. In comparison by parameters of ultrasound, there was similar permeation in $1.0\;W/cm^2$ of continuous mode and $3.0\;W/cm^2$ of pulsed mode and it was effective to high intensity for using pulsed mode. It was found that duty cycle of ultrasound affected transdermal permeation in meloxicam gel used in this experiment and transdermal permeation was higher in used ultrasound as phonophoresis than non-ultrasound for anti-inflammatory effects.

  • PDF

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.

Effect of the Bean Sprouts Growth by Scanning Frequency of Diagnostic Ultrasound Probe Type and Mode Change (진단용 초음파 Probe 및 Mode 변화에 따른 초음파 주사빈도가 콩나물 발아 과정에 미치는 영향)

  • Choi, Kwanyong;Lim, Hyun Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.150-154
    • /
    • 2015
  • Long time ultrasound scan can cause a temperature rise in human tissue and affect the physical body. This is closely connected with patients' safety. So many researchers have been studied on this matter with animals such as mammals and experimental rat, because diagnostic ultrasound has been used many types of human organ to find disease. Therefore, this study is tested on bean sprouts to search how far the tissue temperature changes because of the excessive scanning consequence from ultrasound diagnosis and frequent number of ultrasonic scanning and how much affect their growth. The United States and several European countries have restrictions for number of scanning, while South Korea does not have any limitation for using ultrasound diagnosis. Comparison was that how different condition affect its' growing. The testing group is like many pregnancy moms to have 50 minutes in B-mode and color doppler mode by linear, convex and sector probe every day for a week and the other is to scan only once during the testing period. As a result, it was confirmed that there was a significant growing difference on frequent ultrasonic scanning group compared to normal one. So the final conclusion is that there needs to have a significant limitation of ultrasound scan time and a number of inspection when having for diagnostic ultrasound and recommendation like USA and a few European countries.

B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements

  • Gamble G.;Beaumont B.;Smith H.;Zorn J.;Sanders G.;Merrilees M.;MacMahon S.;Sharpe N.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02b
    • /
    • pp.169-179
    • /
    • 1994
  • B-mode ultrasound is being used to assess carotid atherosclerosis in epidemiological studies and clinical trials. Recently the interpretation of measurements made from ultrasound images has been questioned. This study examines the anatomical correlates of B-mode ultrasound of carotid arteries in vitro and in situ in cadavers. Twenty-seven segments of human carotid artery were collected at autopsy. pressure perfusion fixed in buffered 2.5% gluteraldehyde and 4% paraformaldehyde and imaged using an ATL UM-8 (10 MHz single crystal mechanical probe). Each artery was then frozen, sectioned and stained with van Gieson or elastin van Gieson. The thickness of the intima. media and adventitia were measured 'to an accuracy of 0.01 mm from histological sections using a calibrated eye graticule on a light microscope. Shrinkage artifact induced by histological preparation was determined to be 7.8%. Digitised ultra sound images of the artery wall were analysed off-line. The distance from the leading edge of the first interface ($LE_{1}$) to the leading edge of the second interface ($LE_2$) was measured using a dedicated programme. $LE_{1}$-$LE_{2}$ measurements were correlated against histological measurements corrected for shrinkage. Mean values for the far wall were: ultra sound $LE_{1}$-$LE_{2}$ (0.97 mm, S.D. 0.26), total wall thickness (1.05 mm, S.D. 0.37), adventitia (0.35 mm, S.D. 0.16), media (0.61 mm, S.D. 0.18). intima (0.09 mm, S.D. 0.13). Ultrasound measurements corresponded best with total wall thickness, rather than elastin or the intima-media complex. Excision of part of the intima plus media or removal of the adventitia resulted in a corresponding decrease in the $LE_{1}$-$LE_{2}$ distance of the B-mode image. Furthermore. increased wall thickness due to intimal atherosclerotic thickening correlated well with $LE_{1}$-$LE_{2}$ distance of the B-mode images. B-mode images obtained from the carotid arteries in situ in four cadavers also corresponded best with total wall thickness measured from histological sections and not with the thickness of the intima plus media. In conclusion, the $LE_{1}$-$LE_{2}$ distance measured on B-mode images of the carotid artery best represents total wall thickness of intima plus media plus adventitia and not intima plus media alone.

  • PDF

Ultrasound Elasticity Imaging Methods (초음파 탄성 영상법)

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.1-10
    • /
    • 2010
  • The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue types is helpful for quantitative diagnosis, and such a method of imaging the elasticity of human tissue is collectively referred to as ultrasound elasticity imaging. Recently, elasticity imaging has established itself as an effective diagnostic modality in addition to ultrasound B-mode imaging. The purpose of this paper is to present various elasticity imaging methods that have been reported up to now and to describe their principles of operation and characteristics.

Transdermal Permeation Effects of Lidocaine HCl Gel Using Low Frequency Ultrasound of 500kHz (500KHz 초음파를 이용한 Lidocaine HCl Gel의 경피투과 효과)

  • Jeong, Dae-In;Yoon, Se-Won;Choi, Sug-Ju;Lee, Jeong-Woo;Kim, Myong-Hoon;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.75-82
    • /
    • 2006
  • Purpose: This study conducted the following experiment to examine transdermal permeation effects or 500 KHz ultrasound with lidocaine HCl. Methods; First, to experiment skin permeation enhancement effects of 500 KHz ultrasound frequency, it produced apparatus and transducer of 500 KHz ultrasound and Franz diffusion cell for skim permenation experiment suitable to purposes of the experiment. Transdermal permeation experiment applied Lidocaine HCL gel to skin of hairless mouse depending on ultrasound frequency and duty cycle and analyzed permeation ratio with HPLC. Results: As a result of fixing lidocaine HCl gel at the same intensity with pulsed mode and continuous mode and comparing transdermal permeation ratio by frequency, transdermal permeation ratio was increased at 500 KHz ultrasound and remarkably increased at continuous ultrasound. It was found that 1 MHz and 500 KHz ultrasound in transdermal permeation experiment enhanced transdermal permeation of lidocaine HCl. In particular, transdermal permeation of 500 KHz using lidocaine HCl gel was highest. Conclusion: However, researches considering various frequencies, intensities and application hours in low frequency areas including 500 KHz ultrasound are needed to increase deep permeation or drugs.

  • PDF

Medical Ultrasonic Elasticity Imaging Techniques (의료용 초음파탄성영상법)

  • Jeong, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.573-584
    • /
    • 2012
  • Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.