• Title/Summary/Keyword: Ultrasonic waves bonding

Search Result 8, Processing Time 0.028 seconds

Application of Generalized Lamb Wave for Evaluation of Coating Layers

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.224-230
    • /
    • 2007
  • This work is aimed to explore a possibility of using the generalized Lamb waves for nondestructive evaluation of the bonding quality of layered substrates. For this purpose, we prepared two sets of specimens with imperfect bonding at their interfaces; 1) TiN-coated specimens with various wear conditions, and 2) CVD diamond specimens with various cleaning conditions. A dispersion simulation performed for layered substrates with imperfect interfaces are carried out to get the characteristics of dispersion curves that can be used for bonding quality evaluation. Then the characteristics of dispersion curves of the fabricated specimens are experimentally determined by use of an ultrasonic backward radiation measurement technique. The results obtained in the present study show that the lowest velocity mode (Rayleigh-like) of the generalized Lamb waves are sensitively affected by the bonding quality. Therefore, the generalized Lamb waves can be applied for nondestructive evaluation of imperfect bonding quality in various layered substrates.

Construction of Attractor System by Integrity Evaluation of Polyethylene Piping Materials (폴리에틸렌 배관재의 건전성 평가를 위한 어트랙터 시스템의 구축)

  • Taik, Hwang-Yeong;Kyu, Oh-Seung;Won, Yi
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.609-615
    • /
    • 2001
  • This study proposes analysis and evaluation method of time series ultrasonic signal using attractor analysis for fusion joint part of polyethylene piping. Quantitatively characteristics of fusion joint part is analysed features extracted from time series. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics. These differences in characteristics of fusion joint part enables the evaluation of unique characteristics of fusion joint part. In quantitative fractal feature extraction, feature values of 4.291 in the case of debonding and 3.694 in the case of bonding were proposed on the basis of fractal dimensions. In quantitative quadrant feature extraction, 1,306 point in the case of bonding(one quadrant) and 1,209 point(one quadrant) in the case of debonding were proposed on the basis of fractal dimensions. Proposed attractor feature extraction can be used for integrity evaluation of polyethylene piping material which is in case of bonding or debonding.

  • PDF

A Study for Automotive Lamp Manufacturing System Control Composing Ultra melting Process (초음파 접합 공정을 합성한 자동차용 램프 생산시스템 제어에 관한 연구)

  • Lee, Il-Kwon;Kook, Chang-Ho;Kim, Seung-Chul;Kim, Ki-Jin;Han, Ki-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • The purpose of this paper is to study of the vehicle lamp manufacturing system composing ultrasonic waves connection process. Making lamp assembly plant, it was produced in the separate process as the injection molding, ultrasonic waves bonding, annealing in the constant temperature, lamp assembling and packing. But the improvement method producing the lamp was added with one-step process by one automation technique. As a result, welding with ultrasonic waves process, the method decreased the energy consumption and noise during ultrasonic waves welding. Therefore, this method used the mathematics modeling for checking validity, it selected the stability and suitable controller using transfer function of plant and bode chart. In this study, the $180^{\circ}$ revolution control system to turn injection part upside down was $M_{eq}\;lcos{\theta}(t)$ because of gravity influence. It effected to unstable condition a system. For solving this problem, it aimed the linearization and stabilization of system by elimination $M_{eq}\;lcos{\theta}(t)$ as applying Free-forward control technique.

Feasibility Study of Sludge Detection inside Pipes Using Torsional Guided Waves (비틀림 유도파를 이용한 배관 슬러지 검출 방법의 현장 적용성 평가)

  • Park, Kyung-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.100-105
    • /
    • 2014
  • It has been previously reported that in principle sludge and blockages can be detected and even characterized by using guided ultrasonic torsional waves, based on an idealized model in which the sludge layer was simplified in terms of geometry and material properties. The work revealed that the presence of a layer inside a pipe scatters the guided wave propagating in the pipe and both the reflection and transmission of the guided wave can be used to effectively detect and characterize the layer. This paper proceeds the work by taking into account more realistic sludge characteristics, including irregular circumferential profiles of the sludge layer and imperfect bonding state between the sludge and the pipe. The influence of these issues is investigated to identify the critical factors that influence the detection and characterization capability of the two measurements.

A Study on Instrument Panel Welding by Ultrasonic-Waves for Automotive Interior Applied Emotional Design (감성 디자인이 적용된 자동차 인테리어 디자인을 위한 인스트루먼트 패널 초음파 용접에 관한 연구)

  • Lee, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.260-266
    • /
    • 2010
  • Today's consumers are looking for emotional design which can fulfill their own potential desire. Emotion varies according to individual circumstance, age, sex, culture, education, profession and so on. Automotive instrument panel design is the most important part of interior design, because it affects the impression of interior design and has the equipments for safety, entertainment and various information. Thus, this study was performed to apply emotional design to automotive instrument panel which is the most important part of automotive interior, and find the best bonding conditions to build instrument panel efficiently by comparing mechanical properties in thermoplastic resin of polyethylene (PE) adhesion. Satisfactory adhesion was executed in ultrasonic welding for the same materials of PE. The best welding conditions were found to be welding time of I second, welding pressure of 250 kPA for PE-PE welding. Dissimilar materials were adhered when adhesion and ultrasonic welding were performed at the same time.

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

Development of Micro Mixing Device with Using Ultrasonic Wave (초음파를 이용한 마이크로 혼합기 제작)

  • Jeon, Yongho;Choi, Byung-Joo;Kang, Seung-Joon;Kim, Dong-Kwon;Kim, Hyun-Jung;Lee, Moon Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.459-464
    • /
    • 2013
  • The purpose of a micro-mixing device is to enhance the mixing by increasing the diffusion effect between different types of flows. There have been many attempts to actively or passively increase mixing. However, those studies were limited to lab-scale experiments because the production of devices requires a series of processes, time, cost, and the mixing quality itself. For this reason, this study attempted to develop a quick and simple process for micro-mixing device fabrication by using conventional machining and bonding processes and applying ultrasonic waves from the outside of the mixing device. The mixing quality was quantified by using the mixing index, and the results showed that the proposed system increases the mixing from ~33% to ~10% with respect to the flow rates.

Characterization of TiN Layered Substrate using Leaky Rayleigh Surface Wave (누설 레일리 표면파를 이용한 TiN 코팅 부재의 특성평가)

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • Since ceramic layers coated on machinery components inevitably experience the changes in their properties it is necessary to evaluate the characteristics of ceramic coating layers nondestructively for a reliable use of coated components and 4heir remaining life prediction. To address such a need, in the present study, an ultrasonic backward radiation technique is applied to investigate the characteristics of leaky Rayleigh surface waves propagating through the very thin TiN ceramic layers coated on AISI 1045 steel or austenitic 304 steel substrate with three different conditions of surface roughness, coating layer thickness and wear condition. In the experiments performed in the present work, the peak angle and the peak amplitude of ultrasonic backward radiation profile varied sensitively according to three specimen preparation renditions. in fact, this result demonstrates a high possibility of the ultrasonic backward radiation as an effective tool for the nondestructive characterization of the resting layers even in such a thin regime.