• Title/Summary/Keyword: Ultrasonic system

Search Result 1,514, Processing Time 0.028 seconds

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

Electrical Properties of Multilayer Actuator Structured-ultrasonic Nozzle Driving System using a Resonant Inverter (공진형 인버터를 사용한 적층액츄에이터형 초음파 노즐 구동시스템의 전기적 특성)

  • Hwang, Lark-Hoon;Kim, Hwa-Soo;Kim, Kook-Jin;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.953-958
    • /
    • 2007
  • In this paper, multilayer actuator structured-ultrasonic nozzle and resonant inverter driving circuit were manufactured, respectively. Its electrical properties were investigated. Multilayer actuator structured ultrasonic nozzle was fabricated using PMN-PNN-PZT ceramics showing excellent piezoelectric characteristics. In order to drive ultrasonic nozzle, resonant PWM inverter was used. The purpose of this study is to find the optimal driving condition of ultrasonic nozzle. Accordingly, electrical and temperature characteristic of multilayer ultrasonic driving system were investigated by experiments as a function of the series resonance inductance. The driving current of ultrasonic nozzle showed the maximum current of 27 mA. Also, the surface temperature of ceramic vibrator showed $44^{\circ}C$ at driving time for 20 min. The ultrasonic nozzle was stably operated in the case of driving for more than 20 min.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

A Long Range Accurate Ultrasonic Distance Measurement System by Using Period Detecting Method (주기인식 검출방식을 이용한 장거리 정밀 초음파 거리측정 시스템 개발)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.41-49
    • /
    • 2007
  • In this paper, we proposed a new ultrasonic distance measurement system with high accuracy and long range. To improve accuracy and enlarge range, the time of flight of ultrasonic is calculated by the period detecting method. In the proposed ultrasonic distance measurement system, the ultrasonic transmitter and receiver are separated but synchronized by RF(Radio frequency) module. The experiment has been implemented from short distance 1m to maximum available distance 30m. And the period detecting method is compared with the conventional threshold level method. Experimental results show the accuracy and range of the distance measurement are improved by this period detecting method.

The Polishing Characteristics and Development of Ultrasonic Polishing System (초음파 폴리싱 시스템의 개발 및 특성)

  • Moon, H.H.;Park, B.G.;Kim, S.C.;Lee, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1014-1020
    • /
    • 2003
  • We have developed the ultrasonic polishing system to get super finishing that consist of machine part that can rotate and travel the main shaft with power 1.5kW, ultrasonic generator with frequency 20kHz. By using this system we were investigated the characteristics of ultrasonic polishing and deduced the major facters which affect the surface roughness by the experimental plans for three different materials such as ceramic, glass, and wafer, and so could be obtained following results. We could be obtained the excellent surface for hard-to-difficult cutting materials. The rotating speed could be found to be major factor influencing the surface roughness. In the case of ceramic and wafer, we were able to obtain good surface roughness when the feed rate and ultrasonic output is higher. In the case of glass, the surface roughness becames worse when ultrasonic output is higher because of increasing of load affacting on the particles in slurry.

  • PDF

Development of an RF-Ultrasonic Sensor System to Detect Goal and Obstacle for the CARTRI Robot (CARTRI 로봇의 목표물 검출과 장애물 검출을 위한 RE-초음파 센서 시스템 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1009-1018
    • /
    • 2003
  • In a park or street, we can see many people Jogging or walking with their dogs chasing their masters. In the previous study, an entertainment robot, CARTRI that imitates the dog's behavior was created. The robot's task was chasing a moving goal that was recognized as the master. The physical structure of the CARTRI robot was three-wheel type locomotion system. The sensor system which could detect the position of the master in the outdoor space, was consists of a signal transmitter which was held by the master and five ultrasonic receivers which were mounted on the robot. In the experiment, the robot could chase a human walking in outdoor space like a park. But it could not avoid obstacles and its behavior was only goal-chasing behavior because of the limit of the sensor system. In this study, an improved RF-ultrasonic sensor system which can detect both goal and obstacle is developed in order to enable the CARTRI robot to carry out various behavior. The sensor system has increased angle resolution by using eight ultrasonic receivers instead of five in the previous study. And it can detect obstacle by using reflective type ultrasonic sensors. The sensor system is designed so that detection of goal and obstacle could be conducted in one sampling period. The Performance of the developed sensor system is evaluated through experiments.

Implementation of the Ultrasonic Local Positioning System using Dual Frequencies and Codes (이중 주파수와 코드를 이용한 초음파 위치 인식 시스템 구현)

  • Cho, Bong-Su;Cho, Seck-Bin;Yang, Sung-Oh;Baek, Kwang-Ryul;Lee, Dong-Hwal
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.647-655
    • /
    • 2008
  • This paper presents real-time algorithm for an ultrasonic Local Positioning System(LPS). An ultrasonic LPS consists of 4 transmitters and n receivers. Each transmitter transmits an sequential ultrasonic signal to avoid interference of ultrasonic signal. This method is a noneffective application for a fast object. Because receiver detects four sequential transmissive ultrasonic signal and calculates a position. This paper proposes the method which 4 transmitters transmit simultaneous ultrasonic signal and each transmitter distinguished by frequencies and codes. And Auto-Correlation Function(ACF) method separates codes from an ultrasonic echo signal which is interference of each transmitter's code. If the receiver uses only ACF method, it is difficult to implement real time application for increased computation. This paper implements LPS using dual frequencies and ACF method. Using dual frequencies reduces codes length. The reduced codes length save computation in ACF. To prove this algorithm by experiment, high performance DSP(digital signal processor) used. The result shows the performance of the designed system is good enough positioning.

Fabrication of RFID TAG Micro Pattern Using Ultrasonic Convergency Vibration (초음파 융합진동을 이용한 미세패턴성형 기술 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.175-180
    • /
    • 2020
  • In this study, we developed a micropattern technology in the shape of RFID TAG antenna using ultrasonic micropattern manufacturing system developed to enable micropattern technology. The ultrasonic tool horn in longitudinal vibration mode was installed in the micropattern manufacturing system to develop the ultrasonic press technology for the micropattern antenna shape of the RFID TAG antenna shape on the insulating sheet surface. The ultrasonic shaping technology was manufactured by applying the resonance design technique to a 60kHz tool horn, and by using the micropattern manufacturing system, the coil wire having a thickness of 25㎛ can be ultrasonically press-molded on an insulating sheet of 200㎛ or less. In ultrasonic press technology, the antenna shape having a minimum line width of 150㎛ could be molded without disconnection, peeling, or twisting of the coil wire.

Effect of Ultrasonic Energy in the Engine using Diesel Fuel Blended Rape-seed Oil (유채혼합유를 사용하는 기관에서 초음파에너지의 영향)

  • Kwon, K.R.;Ko, K.N.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.5-10
    • /
    • 2005
  • The effect of ultrasonic energy for diesel fuel and blend oil has been revealed in this paper. The experimental setup consisted of a high speed diesel engine with 4 cylinder, dynamometer and ultrasonic fuel feeding system. Ultrasonic energy was added to diesel fuel and blend oil, which is a blend of diesel fuel and rape-seed oil. As engine speed was changed, engine torque and power, brake specific fuel consumption and thermal efficiency were measured in detail. As the results, by adding ultrasonic energy to diesel fuel and blend oil, the engine performance was improved in range of the experiment. The effect of improvement on brake specific fuel consumption and thermal efficiency for blend oil is higher than that for diesel fuel. When ultrasonic energy was added to diesel fuel or blend oil, a rise in engine torque for diesel fuel was higher than that for blend oil, but the effect of ultrasonic energy was small. From these results, it may be desirable to add ultrasonic energy to blend oil for the use of blend oil to diesel engine.

  • PDF

Preliminary Study of the Measurement of Foreign Material in Galvanic Corrosion Using Laser Ultrasonic

  • Hong, Kyung Min;Kang, Young June;Park, Nak Kyu;Choi, In Young
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.323-327
    • /
    • 2013
  • A laser ultrasonic inspection system has the advantage of nondestructive testing. It is a non-contact mode using a laser interferometer to measure the vertical displacement of the surface of a material caused by the propagation of ultrasonic signals with the remote ultrasonic generated by laser. After raising the ultrasonic signal with a broadband frequency range using a pulsed laser beam, the laser beam is focused to a small point to measure the ultrasonic signal because it provides an excellent measurement resolution. In this paper, foreign materials are measured by a non-destructive and non-contact method using the laser ultrasonic inspection system. Mixed foreign material on the corroded part is assumed and the laser ultrasonic experiment is conducted. An ultrasonic wave is generated by pulse laser from the back of the specimen and an ultrasonic signal is acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer (CFPI). The characteristic of the ultrasonic signal of existing foreign material is analyzed and the location and size of foreign material is measured.