• Title/Summary/Keyword: Ultrasonic speed

Search Result 433, Processing Time 0.028 seconds

Fabrication and Operation Characteristics of Linear Ultrasonic Motor (L$_1$-B$_4$모드 선형 초음파 전동기의 제작과 운전 특성)

  • 이명훈;김진수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.257-262
    • /
    • 2001
  • In this paper, a linear ultrasonic motor using piezoelectric ceramics was fabricated, and its operation characteristics were investigated. A linear ultrasonic motor using L$_1$-B$_4$model was composed of a stator and a rotor, and a stator was composed of piezoelectric ceramics and a elastic body. When applied frequency and voltage were 58.4kHz and 56V respectively, the feeding speed of the motor was 19.8 cm/s. A linear ultrasonic motor could be moved in left and right directions by the phase difference. Feeding speed and feeding force of a linear ultrasonic motor could be controlled by applied voltage. A linear ultrasonic motor had a droping torque-speed characteristic. The maximum efficiency of linear ultrasonic motor was 2.14%. Therefore, this linear ultrasonic motor can be expected to be used for a card-forwarding device, such as a card reader device and so on.

  • PDF

Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II) (롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II))

  • Chang, Byeong Hee;Lee, Seunghoon;Kim, Yang won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

Ultrasonic Speed and Isentropic Compressibility of 2-propanol with Hydrocarbons at 298.15 and 308.15 K

  • Gahlyan, Suman;Verma, Sweety;Rani, Manju;Maken, Sanjeev
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.668-678
    • /
    • 2017
  • Intermolecular interactions were studied for binary mixtures of 2-propanol + cyclohexane, n-hexane, benzene, toluene, o-, m- and p-xylenes by measuring ultrasonic speeds (u) over the entire range of composition at 298.15 K and 308.15 K. From these results the deviation in ultrasonic speed was calculated. These results were fitted to the Redlich-Kister equation to derive the binary coefficients along with standard deviations between the experimental and calculated data. Acoustic parameters such as excess isentropic compressibility ($K_s^E$), intermolecular free length ($L_f$) and available volume ($V_a$) were also derived from ultrasonic speed data and Jacobson's free length theory. The ultrasonic speed data were correlated by Nomoto's relation, Van Dael's mixing relation, impedance dependence relation, and Schaaff's collision factor theory. Van Dael's relation gives the best prediction of u in the binary mixtures containing aliphatic hydrocarbons. The ultrasonic speed data and isentropic compressibility were further analyzed in terms of Jacobson's free length theory.

A Study on the Driving Circuit of Piezoelectric Ultrasonic Motor Using PLL Technique (PLL을 이용한 압전 초음파 모터의 구동회로에 관한 연구)

  • ;;Sergey Borodin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • This paper describes control principles of the piezoelectric ultrasonic motor which is operated by the ultrasonic vibration generated by the piezoelectric element. The piezoelectric ultrasonic motor has excellent characteristics such as compact size, noiseless motion, low speed, high torque and controllability, and has been recently applied for the practical utilization in industrial, consumer, medical and automotive fields. In this paper, the design of two-phase push-pull inverter for driving the piezoelectric ultrasonic motor is described, and a new control method of automatic resonant frequency tracking using PLL(Phase-Locked Loop) technique is mainly presented. the experimental results by this inverter system for driving the piezoelectric ultrasonic motor are illustrated herein. The inverter system with PLL technique improved the speed stability of the piezoelectric ultrasonic motor.

On the Change of Fabric Mechanical properties in Ultrasonic Fabric Washing System (호부직물의 초음파 수세에 의한 역학적 특성의 변화)

  • Lee, Choon-Gil;Park, Sung-Diuk;Oh, Bong-Hyo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.28-38
    • /
    • 1997
  • Peach skin fabrics were washed by the general and ultrasonic washing systems using different conditions. The physical properties of the washed fabrics were estimated. The following results were obtained through experimental data and their analysis. The tensile properties were changed due to fabric running speed and washing methods. The lower the running speed, the higher the extensibility and resilience and the lower the linearity and tensile energy. In the general washing method, the extensibility and resilience had lower values than those of the ultrasonic washing method and the linearity and tensile energy had the higher values than those of the ultrasonic washing system. The bending properties, bending moment and histeresis, were estimated. These values were generally lower in the ultrasonic washing system than those of the general washing system. The faster the washing speed, the higher the value of hysterisis. The shear properties were affected by the fabric running speed and washing methods. Shear stiffness and hysteresis of shear forces increased according to the increase of the fabric running speed. The values were higher in the general washing system than those of the ultrasonic washing system. The compressional energy was affected by the fabric running speed. The higher the fabric speed the higher the compressional energy. The ultrasonic washing system had lower compressional energy than the general washing system. The higher the running speed, the lower the coefficient of friction and geometrical roughness. The values of geometrical roughness were infienced by the removal of the sizing agent. The higher the remaining sizing agent, the higher the fabric weight and the thicker the thickness of fabric.

  • PDF

A Basic Research on Estimation of Material Condition by Using Stress Dependency of Sound Speed (음속의 응력의존성을 이용한 재료 상태평가에 대한 기초적 연구)

  • Kim, K.J.;Jhang, K.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 1996
  • In the conventional linear elasticity, sound speed is determined by only elastic modulus and density of the medium. In actual, however, sound speed depends on the stress and this dependency becomes nonlinear as the stress increases. These phenomena can be introducing nonlinear elastic modulus. In this paper, relationships between nonlinear elastic modulus up to 4th order and the internal status of materials are discussed through computer simulations and experiments. For the measurement of sound speed, a new type of measurement system using ultrasonic wave is proposed on the basis of ultrasonic pulse echo method which has been generally used in nondestructive ultrasonic test equipment. In order to confirm the stress dependency of sound speed, several experiments are carried out for alumina specimen.

  • PDF

A Study on the Revolution Characteristics of the Ultrasonic Motor with Windmill Type Structure (풍차형 구조를 갖는 초음파 전동기의 회전 특성에 관한 연구)

  • Kim, Jin-Su;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.681-686
    • /
    • 1999
  • In this study, a windmill type ultrasonic motor operated by single-phase AC electric field was fabricated, and then revolution characteristics and 3-dimensional vibration mode of the ultrasonic motor were investigated. Brass metal was pressed with umbrella-type using metal mold, then slot of 4 kind was processed at various thickness. It was found that the revolution speed of the ultrasonic motor increased with decreasing the thickness of elastic body. The revolution speed of the ultrasonic motor increased with increasing the slots of elastic body. When the characteristics was measured, applied voltage was changed from $10V_{max}\; to\; 100V_{max}$. Then, revolution was began from $30V_{max}$, if voltage was applied over $90V_{max}$ revolution speed was saturated, and not increased. The maximum revolution speed was 510[rpm] when using elastic body with 6 slots and thickness of 0.15mm. And 3-dimensional displacement mode was rotated clockwise direction.

  • PDF

Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor (회전형 초음파모터의 소형 위상차 제어기 개발)

  • Yi Dong-Chang;Lee Myoung-Hoon;Lee Eu-Hark;Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

Ultrasonic Evaluation of Creep Damage in 316LN Stainless Steel

  • Yin, Song-Nan;Hwang, Yeong-Tak;Yi, Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.33-37
    • /
    • 2007
  • Creep failure of 316LN stainless steel (SS) occurs due to the nucleation and growth of cracks. An investigation was performed to correlate the creep damage with ultrasonic wave speeds and angular frequencies using creep-tested 316LN SS specimens. Ultrasonic wave measurements were made in the direction of and perpendicular to the loading using contact probes with central frequencies of 10, 15, and 20 MHz. We found that the angular frequency and wave speed decreased with increasing creep time to rupture by analyzing the ultrasonic signals from the 15 and 20 MHz probes. Therefore, the creep damage was sensitive to the angular frequency and wave speed of ultrasonic waves.

Revolution Characteristics of Piezoelectric Ultrasonic Motor with Stator Configuration (압전 초음파 전동기의 고정자 구조에 따른 회전 특성)

  • Park, Man-Ju;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.749-751
    • /
    • 1998
  • In this study, the wind-mill type ultrasonic motor was fabricated, and then revolution and temperature characteristics of the ultrasonic motor were measured. Brass metal was pressed with umbrella-type using metal mold, then slot of 4 kind was processed in each of thickness. Among sixteen's ultrasonic motors, heat loss on applied voltage was much at stator of the highest resonant point, but heat loss on applied voltage was almost neglected at the lowest resonant point of stator. The thickener thickness of elastic body, revolution speed was decreased. The more slot of elastic body, revolution speed was increased. Applied voltage was changed from $10V_{max}$ to $100V_{max}$. When applied voltage was under $20V_{max}$, ultrasonic motor was not rotated. When applied voltage was over $90V_{max}$, revolution of ultrasonic motor was saturated. Maximum revolution speed was 510[rpm].

  • PDF