• Title/Summary/Keyword: Ultrasonic source

Search Result 168, Processing Time 0.028 seconds

Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV (3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구)

  • Lee, Dong-Ryul;Loh, Byoung-Gook;Kwon, Ki-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

Ultrasonic Source Localization and Visualization Technique for Fault Detection of a Power Distribution Equipment (배전설비 결함 검출을 위한 초음파 음원 위치추정 및 시각화 기법)

  • Park, Jin Ha;Jung, Ha Hyoung;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • This paper describes the implemenation of localization and visualization scheme to find out an ultrasonic source caused by defects of a power distribution line equipment. To increase the fault detection performance, $2{\times}4$ sensor array is configured with MEMS ultrasonic sensors, and from the sensor signals aquired, the azimuth and elevation angles of the ultrasonic source is estimated based on the delay-sum beam forming method. Also, to visualize the estimated location, it is marked on the background image. Experimental results show applicability of the present technique.

The Nitrogen and Phosphorus Removal of UNR Process Using Sludge Carbon Source (슬러지 탄소원을 주입한 UNR공정의 동절기 질소, 인 처리효율)

  • Kim Young Gyu;Kim In Bae
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.93-97
    • /
    • 2002
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus with municipal wastewater in ultrasonic nutrient removal (UNR) process using ultrasonic sludge carbon source. The removal efficiency for total nitrogen was 44.2% at biological nutrient removal (BNR) process, 50.8% at UNR process. The removal efficiency for total phosphorus was 45.6% at BNR process, 46.2% at UNR process. The removal of nitrogen was effectively influenced by ultrasonic sludge carbon source.

Effective Location Estimation of Partial Discharge Using Ultrasonic Signal's Propagation Characteristic and Neural Network (초음파 전달특성과 신경망을 이용한 효과적인 부분방전 위치 추정)

  • Seo, In-Chul;Kim, Jae-Chul;Jeon, Young-Jae;Kim, Young-No
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.467-469
    • /
    • 2001
  • This paper presents an efficient location estimation methodology for a partial discharge(PD) source in the power transformer. The methodology previously proposed is not suitable for locating a PD source because the ultrasonic signal with medium attenuated through the inner structure. In general, the propagation characteristic of ultrasonic signal with medium is different. Therefore, using this propagation characteristic, we can detect the location of PD source. In this paper, the proposal algorithm finds the PD source using three sensors attached to one side of the transformer without attenuation of the ultrasonic signal and applying the neural network based geometrical method. The proposed methodology demonstrates the effectiveness and validity on an experimental transformer.

  • PDF

Study on 3-D Physical Modeling for the Inspection of Tunnel Lining Structure by using Ultrasonic Reflection Method (터널 지보구조 진단을 위한 초음파 반사법을 이용한 3차원 모형실험 연구)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.221-228
    • /
    • 2002
  • Thickness of concrete lining, voids at the back of lining or shotcrete are very important elements for inspecting the safety of tunnels. Therefore, the inspection of tunnel lining structure means to investigate the inner layer boundaries of the structure. For this purpose, seismic reflection survey is the most desirable method if it works in good conditions. However, the conventional seismic reflection method can not be properly used for investigating thin layers in the lining structure. In other words, to detect the inner boundaries, it is desirable for the wavelength of source to be less than the thickness of each layer and for the receiver to be capable of detecting high frequency(ultrasonic) signals. To this end, new appropriate source and receiver devices should be developed above all for the ultrasonic reflection survey. This paper deals primarily with the development of source and receiver devices which are essential parts of field measuring system. Interests are above all centered in both the radiation pattern, energy, frequency content of the source and the directional sensitivity of the receiver. With these newly devised ones, ultrasonic physical modeling has been performed on 3-D physical model composed of bakelite, water-proof and concrete, The measured seismograms showed a clear separation of wave arrivals reflected from each layer boundary. Furthermore, it is noteworthy that reflection events from the bottom of concrete below water-proof could be also observed. This result demonstrates the usefulness of the both devices that can be applied to benefit the ultrasonic reflection survey. Future research is being focus on dealing with at first an optimal configuration of source and receiver devices well coupled to tunnel wall, and further an efficient data control system of practical use.

  • PDF

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

A Study on Characteristics of Sagnac Interferometric Optical Fiber Sensor to Pulsed Ultrasonic Signal in Underwater (수중에서 펄스초음파 신호에 대한 Sagnac 간섭형 광섬유센서의 특성 연구)

  • 이준호;신대용
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • In this paper, we present the fabrication and characteristic analysis of Sagnac interferometric optical fiber senior(OFS) system for detecting pulsed ultrasonic signal in underwater. The hollow cylindrical mandrel wound round by single mode optical fiber is used as sensing component. The ultrasonic signal source is simulated by the PZT actuator operated by an function generator. The distance dependency of the OFS's sensitivity was measured. The sensitivity has been shown to be inversely propotional to the square-root of distance between ultrasonic source and sensing component. It has also been shown that the OFS could detect the signals less affected by ultrasonic path comparing to conventional acousto-electric sensor. and accurate location of ultrasonic signal could be carried out using two OFSs.

Installation effects on the characteristics of multi-path ultrasonic flowmeter (배관 형상이 다회선 초음파 유량계의 특성에 미치는 영향)

  • Park, K. A.;Choi, Y. M.;Choi, H. M.;Yoon, B. R.;Hwang, K. B.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.114-117
    • /
    • 1999
  • Five-path ultrasonic flowmeters (200 and 300 mm diameters) were tested to obtain it's characteristics in a water flow standard system. A five-path ultrasonic flowmeter was installed after various pipe fittings (elbow, valve, tee) or a pump. The distance between flow disturbance source and a flowmeter was main experimental parameter. Without a flow conditioner, a five-path ultrasonic flowmeter shows good characteristics as the distance between flow disturbance source and a flowmeter is longer than 10 diameter of a flowmeter.

  • PDF

Torque Measurement System of Piezoelectric Ultrasonic Motor (압전 초음파 전동기의 토크측정 시스템)

  • Kim, Young-Gyoon;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1780-1782
    • /
    • 1999
  • The ultrasonic motor used here is the windmill type ultrasonic motor operated by single-phase AC source. A metal-ceramic composite component was used as the stator element to generate ultrasonic vibrations. The windmill type ultrasonic motors has only three components; a stator element of two wind-mill shape slotted metal endcaps, a rotor and a bearing. In this paper we proposed a system for torque measurement of piezoelectric ultrasonic motor.

  • PDF

A Novel Cooling Method by Acoustic Streaming Induced by Ultrasonic Resonator (초음파 진동자에 의해 유도된 음향유동을 이용한 첨단 냉각법)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2003
  • A novel cooling method induced by acoustic streaming generated by ultrasonic vibration at 30㎑ is presented. Ultrasonic vibration is obtained by piezoelectric devices and the maximum vibration amplitude of 50 m is achieved by including a horn, mechanical vibration amplifier in the system and making the complete system resonate. To investigate the enhancement of heat transfer capability of acoustic streaming, the temperature variations of heat source and air in the vicinity of heat source are measured in real-time. It is observed that acoustic streaming is instantly induced by ultrasonic vibration, resulting in the significant temperature drop due to the bulk air flow caused by acoustic streaming. In addition, it is observed that the cooling effect on the heat source is maximized when the gap between the ultrasonic vibrator and heat source coincides with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave. The theoretical analysis of the dependence on the gap is also accomplished and verified by experiment. The advantage of the proposed cooling method by acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover. This cooling method can be utilized to the nano and micro-electro mechanical systems, where the fan-based conventional cooling method can not be employed.