• Title/Summary/Keyword: Ultrasonic reactor

Search Result 97, Processing Time 0.024 seconds

Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method (초음파와 Barkhausen Noise에 의한 강의 연.취성천이온도 예측)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1215-1222
    • /
    • 1999
  • It is advantageous to use an NDE method to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the material/component. This paper shows that the ultrasonic and the Barkhausen noise(BHN) methods can be used to accurately characterize forged reactor vessels. The attenuation coefficient of the ultrasonic wave was changed with heat treatment temperature and condition[as-quenched, tempered, PWHT]. The RMS[root mean square] voltage of Barkhausen noise depended on heat treatment temperature and conditions. The fracture appearance transition temperature(FATT) can be predicted using nondestructive evaluation methods.

Demonstration of an ultrasonic imaging system for molten lead

  • Jonathan Hawes;Jordan Knapp;Robert Burrows;Robert Montague;Paul Wilcox;Hual-Te Chien;Jeff Arndt;Steve Walters
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1460-1471
    • /
    • 2024
  • 2D and 3D ultrasonic imaging has so far not been demonstrated in pure molten lead in the open literature. In this study the development of such an ultrasonic device for imaging is outlined and results from testing at 380 ℃ in lead are presented. The main difficulties were found to be achieving then maintaining suitable wetting while ensuring suitable durability of the device, both due to the harsh nature of molten lead and the elevated temperatures. The successful detection and imaging (2D and 3D), of differently shaped targets, where the features were above the size of the transmitted ultrasound beam was demonstrated.

Preparation of Spherical (Zr, Sn)TiO4 Powders by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의한 $(Zr, SN)TiO_4$ 구형 미분말의 합성)

  • 조서용;이종흔;김명철;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.465-470
    • /
    • 1994
  • Fine, spherical (Zr, SN)TiO4 powders were prepared from the aqueous solution of metal chlorides by ultrasonic spray pyrolysis. Single phase (Zr, SN)TiO4 powders could be obtained above $700^{\circ}C$ (=temperature of the reactor) and all powders exhibited sizes in the range of 0.1 to 2.0 ${\mu}{\textrm}{m}$ and a narrow size distribution. The sintering properties of the prepared powders were better than those of the powders from solid-state reaction.

  • PDF

Feasibility of Ultrasonic Inspection for Nuclear Grade Graphite (원자력급 흑연의 산화 정도에 따른 초음파특성 변화 및 초음파탐상의 타당성 연구)

  • Park, Jae-Seok;Yoon, Byung-Sik;Jang, Chang-Heui;Lee, Jong-Po
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.436-442
    • /
    • 2008
  • Graphite material has been recognized as a very competitive candidate for reflector, moderator, and structural material for very high temperature reactor (VHTR). Since VHTR is operated up to $900-950^{\circ}C$, small amount of impurity may accelerate the oxidation and degradation of carbon graphite, which results in increased porosity and lowered fracture toughness. In this study, ultrasonic wave propagation properties were investigated for both as-received and degradated material, and the feasibility of ultrasonic testing (UT) was estimated based on the result of ultrasonic property measurements. The ultrasonic properties of carbon graphite were half, more than 5 times, and 1/3 for velocity, attenuation, and signal-to-noise (S/N) ratio respectively. Degradation reduces the ultrasonic velocity slightly by 100 m/s, however the attenuation is about 2 times of as-receive state. The results of probability of detection (POD) estimation based on S/N ratio for side-drilled-hole (SDHs) of which depths were less than 100 mm were merely affected by oxidation and degradation. This result suggests that UT would be reliable method for nondestructive testing of carbon graphite material of which thickness is not over 100 mm. In accordance with the result produced by commercial automated ultrasonic testing (AUT) system, human error of ultrasonic testing is barely expected for the material of which thickness is not over 80 mm.

Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave (유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지)

  • Joo, Young-Sang;Lee, Hyeong-Yeon;Kim, Jong-Bum;Park, Chang-Gyu;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.297-305
    • /
    • 2006
  • The thermal ratcheting deformation at the reactor baffle and upper internal structure of the liquid metal reactor (LMR) can occur due to movement of the hot sodium free surface. In in-service inspection of reactor internals of LMR, a new inspection technique should be developed for the detection of the thermal ratcheting damage. In this study, an inspection technique using ultrasonic guided wave is proposed for the detection of the thermal ratcheting damage of cylindrical vessels. A 316L stainless steel cylindrical shell specimen has been prepared. The thermal ratchet structural tests were cyclically performed by heat-up up to $550^{\circ}C$ with steep temperature gradients along the axial direction after cool-down by cooling water. Ultrasonic guided wave propagation has been characterized by analysis of dispersion curve of the stainless steel plate. The zero-order antisymmetric $A_0$ guided wave has been selected as the optimal mode for detection of the ratcheting deformation. It is confirmed that the thermal ratcheting deformation can be detected by the measurement of transit time difference of circumferentially propagated $A_0$ guided waves.

The Enhancement Effect of the Electrochemical Deposition in the Recovering Process of Cu from CuSO4 Solution (황산구리 용액으로부터의 구리회수공정에서 초음파에 의한 전착반응의 증대효과)

  • Yoon, Yong-Soo;Hong, In-Kwon;Lee, Jae-Dong;Jeong, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • In this study, the ultrasound which provides the properties of mixing, and surface cleaning effect, the increase of the effective reaction surface area and the enhancement of the effective collision frequency, was used to enhance the recovering efficiency of Cu from the Cu-ion containning waste water. The ultrasonic reactor used in this study was designed and constructed for improving the disadvantage of the existing ultrasonic reactor. From the experimental result and its analysis, we obtained following conclusions. 1. The ultrasound increased the rate of electrochemical deposition to 582.2% in maximum at the condition of $0.1M-CuSO_4$, and 2.1 V-overpotential. 2. The enhancement effect of ultrasound induced by the reduction of diffusion layer thickness was 277.8% in maximum and induced by the other effect except for the reduction effect of the diffusion layer thickness was 253.6% in maximum at $0.1M-CuSO_4$ and 2.1V overpotential. 3. This study gave the possibility of the scale-up of ultrasonic reactor and in particular, ultrasonic reactor would be effective in the treatment of waste water containning a low concentration of Cu ion.

  • PDF

Measurement of the Shape in the Radioactive Area by Ultrasonic Wave Sensor

  • Park, Koon-Nam;Sim, Chuel-Muu;Park, Chang-Oong;Lee, Chang-Hee;Park, Jong-Hark
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.927-934
    • /
    • 2002
  • The HANARO ( High-flux Advanced Neutron Application Reactor) has been operated since 1995. The Cold Neutron (CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure exactly the size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersed ultrasonic technique is considered as the best way to measure the thickness and the diameter of the CN hole. The 4-Axis manipulator was designed and fabricated for locating the ultrasonic sensors. The transducer of an ultrasonic sensor having 10 MHz frequency leads to high resolution as much as 0.03mm. The inside diameter and thickness of 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results show that the thickness and inside diameter of the CN hole is in the range of 3.3∼6.7mm and 156∼ 165mm, respectively. This data will be a good reference for the design of the cold neutron source facility.

Characteristics of the sonolytic reaction of refractory aromatic compounds in aqueous solution by ultrasound (초음파에 의한 수중의 난분해성 방향족화합물의 반응특성)

  • Sohn, Jong-Ryueul;Mo, Se-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • In this study, the series of ultrasonic irradiation for removal of refractory aromatic compounds has been selected as a model reaction in the batch reactor system in order to obtain the reaction kinetics. The products obtained from the ultrasonic irradiation were analysed by GC and GC/MSD. The decomposition of benzene produced toluene, phenol, and C1-C4 compounds, while the intermediates during the ultrasonic irradiation of 2,4-Dichlorophenol(DCP) were phenol, HCl, catechol, hydroquinone, and benzoquinone. It was found that more than 80% of benzene, and 2,4-DCP solutions were removed within 2 hours in all reaction conditions. The reaction order in the degradation of these three compounds was verified as pseudo-zero or first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as $H{\cdot}$ and $OH{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it appeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory compounds which are difficult to be decomposed by the conventional methods.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF