• Title/Summary/Keyword: Ultrasonic linear motor

Search Result 89, Processing Time 0.029 seconds

Design and FEM Analysis of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 유한요소 해석)

  • 김태열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.210-215
    • /
    • 1999
  • The standing waves of the fourth bending ode of vibration and the first longitudinal mode of vibration were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theory. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF

Elliptical Trajectory Analysis of Ultrasonic Linear Motor using ANSYS (ANSYS를 이용한 초음파 리니어 모터의 타원궤적 해석)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.292-295
    • /
    • 2002
  • Transducer for linear ultrasonic motor with symmetric and anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. In this paper, elliptical trajectory of transducer was analyzed by employing the finite element method.

  • PDF

Design of Linear Ultrasonic Motor for Small tong Actuation (렌즈 구동을 위한 선형 초음파 전동기 설계)

  • Kwon Taeseong;Lee Seung-Yop;Kim Sookyung
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.190-194
    • /
    • 2005
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile camera phones. However, conventional magnetic coils of electromagnetic motors are a major obstacle for miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM (ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 1.52 mm/s at 10 kHz input signal in 5 V.

  • PDF

Optimal Friction Materials of Tiny Piezoelectric Ultrasonic Linear Motor

  • Lee, Kyong-Jae;Nahm, Sahn;Kang, Jin-Kyu;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In recent years, a novel tiny piezoelectric linear motor converting a radial mode vibration to a longitudinal mode vibration driven by the impact force has been developed for a camera optical module. The tiny piezoelectric motor is consisted of a shaft, mobile element, and piezoelectric transducer. In this work, the frictional coefficient and static friction force of the interface between the shaft and the mobile element have been investigated according to their respective materials. It was found that two combinations, namely Pyrex glass or stainless steel for the shaft and stainless steel (SUS) for the mobile element, exhibited good dynamic behaviors in the tiny ultrasonic linear motor, which was newly developed based on operating concepts based on Newton's law.

Design of Micro-meter Position Driver for X-Y Stage Using Linear Ultrasonic Motor (리니어 초음파 모터를 이용한 X-Y stage의 마이크로 미터급 위치 구동회로 설계)

  • Kim, Jeong-Do;Hong, Chul-Ho;Kim, Dong-Jin;Ham, Yu-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.165-171
    • /
    • 2005
  • The ultrasonic piezo motor is a new type motor that has an excellent performance and many useful features that electromagnetic motors do not have. But, it suffers from severe system non-linearities and parameter variations especially during speed control. Therefore, it is difficult to accomplish satisfactory control performance by using the conventional PID controller. In this paper, to achieve the precise control for linear type ultrasonic motor was analyzed as a function of response time and change with a driving time. Also, we propose controller that combines STEP controller and PD controller that have error of ${\mu}m$ about liner type ultrasonic motor.

  • PDF

Investigation of The Linear Ultrasonic Motor for Autofocus Lens Drive (렌즈의 자동초점 구동을 위한 리니어 초음파 모터에 관한 연구)

  • Lee, Han-Joo;Oh, Jin-Heon;Kwon, Jeong-Hoon;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1479-1480
    • /
    • 2011
  • In this paper, a novel design ultrasonic linear motor is proposed. The proposed motor consists of a ring type stator and a mover. They have spirals on their inner and outer surface, respectively. Along the spiral, a mover is travelled by a travelling extensional vibration mode of a ring type stator. Hence, a linear up-and-down motion is generated. Through the experimental data, we can verify the applicability regarding the autofocus lens drive.

  • PDF

Design of a Linear Ultrasonic Actuator for Small Lens Actuation (초소형 렌즈 구동을 위한 선형 초음파 구동기 설계)

  • Kwon, Tae-Seong;Choi, Yo-Han;Lee, Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF

Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment (고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어)

  • Kim, Wan-Soo;Lee, Dong-Jin;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1613-1622
    • /
    • 2010
  • In this paper, the ultraprecision positioning control of an ultrasonic linear motor in a high-vacuum environment is presented. The bolt-clamped Langivin type transducer (BLT) with the 3rd longitudinal; and 6th lateral vibration modes was developed, which was excited by using the Eigen resonance frequency for two vibration modes in order to generate stable and high power. In practical applications, however, even if a geometrical design has an Eigen frequency, discordance between both mode frequencies can be generated by the contact mechanism and because of manufacturing errors as well as environmental factors. Both mode frequencies were precisely matched by adjusting the impedence. By using this method, the BLT can be driven under any environmental conditions. The nominal characteristic trajectory following(NCTF) control method was adopted to control the positioning of the system in vacuum. The developed linear motor stage show high positioning accuracy with 5 nm.

Driving Characteristics of L1-B8 Mode Ultrasonic Motor (L1-B8형 초음파 모터의 구동 특성)

  • Kim, Hang-Sik;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.356-359
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. This ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory In the experimental device, piezoelectric ceramics ( a piece of ceramic for the L-mode, $24\;{\times}\;8\;{\times}\;1[mm]$, and four pieces for the B-mode, $12.5\;{\times}\;8\;{\times}\;1[mm]$) were attached to one side of a aluminum plate($100\;{\times}\;8\;{\times}\;1[mm]$), and the stator was supported with a plastic case. As results, no-load rpm was 50[rev./m] when applied voltage was 150[Vrms] at the resonance frequency, and as the voltage was increased, the rpm was increased.

  • PDF