• Title, Summary, Keyword: Ultrasonic linear motor

Search Result 89, Processing Time 0.027 seconds

Fabrication and Operation Characteristics of Linear Ultrasonic Motor (L$_1$-B$_4$모드 선형 초음파 전동기의 제작과 운전 특성)

  • 이명훈;김진수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.257-262
    • /
    • 2001
  • In this paper, a linear ultrasonic motor using piezoelectric ceramics was fabricated, and its operation characteristics were investigated. A linear ultrasonic motor using L$_1$-B$_4$model was composed of a stator and a rotor, and a stator was composed of piezoelectric ceramics and a elastic body. When applied frequency and voltage were 58.4kHz and 56V respectively, the feeding speed of the motor was 19.8 cm/s. A linear ultrasonic motor could be moved in left and right directions by the phase difference. Feeding speed and feeding force of a linear ultrasonic motor could be controlled by applied voltage. A linear ultrasonic motor had a droping torque-speed characteristic. The maximum efficiency of linear ultrasonic motor was 2.14%. Therefore, this linear ultrasonic motor can be expected to be used for a card-forwarding device, such as a card reader device and so on.

  • PDF

Lambda shape multiway moving ultrasonic linear motor (람다형 다방향 초음파 선형 모터)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.263-265
    • /
    • 2007
  • An ultrasonic linear motor using lambda shape vibrators has been designed and fabricated. The multiway ultrasonic motors mainly consist of an lambda shape ultrasonic vibrator which generates elliptical motions in beat. The lambda shape ultrasonic linear motor use longitudinal and bending vibration mode. In order to high precision motion control and multiway moving, piezoceramics were adhered to lambda shape brass elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, The results have shown that the lambda shape ultrasonic linear motor can be moved multiwav by using the phase control. Close agreement between the FEM results and experimental results obtained for the lambda shape ultrasonic linear motor.

  • PDF

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

Design and Characteristics of Ultrasonic Linear Motor Using $L_14-$B_4$Sandwich-type Vibrator ($L_14-$B_4$샌드위치형 진동자를 이용한 선형 초음파 모터의 설계 및 특성)

  • ;;;;Kenji Uchino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1025-1031
    • /
    • 2000
  • An ultrasonic linear motors consist of a slider and an ultrasonic vibrator which generates an elliptical oscillations. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. The ultrasonic linear motor fabricated in this paper was the use of the 1st longitudinal(L1) and 4th bending vibrations(B4). In order to low driving voltage and improve the life time of the ultrasonic motor, we used stacked piezoceramics. Stacked piezoceramics are adhered to aluminum elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, no-load velocity was 0.204[m/s] when applied voltage was 70[ $V_{rms}$] in resonance frequency.y.

  • PDF

Driving characteristic of ultrasonic linear motor (초음파 리니어 모터의 구동특성)

  • 김태열;김범진;박태곤;김명호;권오영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.204-207
    • /
    • 2000
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L$_1$-B$_4$ ultrasonic linear motor use longitudinal and bending multi-vibration. In order to low driving voltage and improve the life time of the ultrasonic oscillator, we used stacked piezoceramics. Stacked piezoceramics are adhered to aluminum elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, no-load velocity was 2.04[m/s] when applied voltage was 70[V$\sub$rms/] in resonance frequency.

  • PDF

Efficiency Improvement of Linear Ultrasonic Motor Using Arrangement for Magnification of Displacement (변위확대기구를 이용한 선형 초음파 전동기의 효율 개선)

  • 이명훈;우상호;김진수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.177-180
    • /
    • 2000
  • In this paper, we studied efficiency improvement of linear ultrasonic motor using projection. The principle of ultrasonic motor is to use an elliptic motion generated at the side of the vibrator, and the elliptic motion of the ultrasonic motor was obtained by complex oscillation of L$_1$-B$_4$ mode. As the experimental results, the efficiency of linear ultrasonic motor without projection was 1.52[%] when applied voltage was 56[V] in resonance frequency 58.4[kHz]. The efficiency of linear ultrasonic motor using projection was 3.36[%] when applied voltage was 56[V] in resonance frequency 58.4[kHz]. The efficiency was improved by projection.

  • PDF

Trajectory of Elliptical Displacement of L1-B4 Type Linear Ultrasonic Motor using Multilayer Piezoelectric Actuator (적층형 압전 액츄에이터를 이용한 L1-B4형 선형 초음파 리니어 모터의 타원변위궤적)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hwang, Eun-Sang;Park, Durk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-52
    • /
    • 2008
  • In this study, multilayer structured ultrasonic linear motor was simulated using Atila for investigating its optimum driving conditions. The ultrasonic linear motors mainly consist of an ultrasonic vibrator to generate elliptical displacement. The ultrasonic linear motor simulated in this paper was the use of the 1st longitudinal(Ll) and 4th bending vibrations (B4). Whit the increase of the number of piezoelectric actuator layers, displacement of node was increased. Maximum total displacement of node was about $3,91{\mu}m$ at the 13 layered ultrasonic motor under 5 V.

Design of Ultrasonic Linear Motor for X-Y Stage (X-Y 스테이지를 위한 초음파 리니터 모터의 설계)

  • 김태열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • /
    • pp.316-320
    • /
    • 2000
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic oscillator which generates elliptical oscillations. Elliptical oscillations are generated by synthesizing two degenerated modes. The design of a stator for an Ultrasonic linear motor was optimized with respect to vibration mode and direction of vibratory displacement by employing the finite element method. The motors were designed by varying the width of stator vibrator and the thickness, the length and the position of piezoceramics.

  • PDF

Elliptical Trajectory Analysis of Ultrasonic Linear Motor (초음파 리니어 모터의 타원궤적 해석)

  • 김태열;김범진;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.411-414
    • /
    • 2000
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic oscillator which generates elliptical oscillations. Elliptical oscillations are generated by synthesizing two degenerated modes. Direction of vibratory displacement was analyzed by employing the finite element method. So, we could recognize that the direction of the slider's movement was controlled by changing the Phase difference of the drive voltage.

  • PDF

Driving Characteristic of L1-B4 Type Ultrasonic Linear Motor by Varying the Size of Elastic Material (탄성체의 크기 변화에 따른 L1-B4형 초음파 리니어 모터의 구동 특성)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.93-96
    • /
    • 2004
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L1-B4 ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and driving characteristics, The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated and experimented. as results When width was 5[mm], the driving characteristics was good.

  • PDF