• Title/Summary/Keyword: Ultrasonic generator

Search Result 131, Processing Time 0.037 seconds

Fabrication and Simulation of Displacement Properties of Ultrasonic Generator Handpiece (초음파 절삭기 핸드피스부 제작 및 변위 특성 시뮬레이션)

  • Kim, Seung-Won;Yoo, Ju-Hyun;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.152-155
    • /
    • 2018
  • Ultrasonic wave technologies have been widely used in ultrasonic washing machines, ultrasonic surgery, ultrasonic welding machines, ultrasonic sensors, and medical instruments. Ultrasonic surgery can be realized through the cavitation effect of ultrasonic waves. In this study, piezoelectric ceramics were manufactured to achieve the optimum design of a piezoelectric vibrator in a handheld generator for ultrasonic surgery. The best specimen showed the excellent piezoelectric properties of kp=0.624, Qm=1,531, and $d_{33}=356pC/N$. Numerical modeling based on the finite element method was performed to find the resonance frequency, the anti-resonance frequency, and the displacement properties of the handheld ultrasonic generator. Maximum displacement was observed in the six-step piezoelectric vibrator at $6.36{\mu}m$.

Partial Discharge Ultrasonic Analysis for Generator Stator Windings

  • Yang, Yong-Ming;Chen, Xue-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.670-676
    • /
    • 2014
  • The objective of this research is to utilize the ultrasonic method to analyze the property of partial discharge (PD) which is generated by the winding of the insulation stator in the generator. Therefore, a PD measurement system is built based on ultrasonic and virtual instruments. Three types of PD models (internal PD model, surface PD model and slot PD model) have been constructed. With the analysis of these experimental results, this research has identified the ultrasonic signals of the discharges which were produced by three types of PD models. This analysis shows the different features among these PD types. Both the time domain and frequency domain of the ultrasonic signals are obviously different. In addition, an experiment based on a large rotating machine has been done to analyze ultrasonic noises. The result indicates that the ultrasonic noises can be wiped off by the filters and algorithms. The application of this system is convenient for the detection of early signs of insulation failure, which is an effective method for diagnosis of insulation faults.

Development of Ultrasonic Sensor for Engine Condition Diagnosis of EDG (비상디젤발전기 엔진 상태진단 초음파 탐촉자 개발)

  • Lee, Sang-Guk;Choi, Kwang-Hee
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.31-35
    • /
    • 2013
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear power plant at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite standby diesel generator should be ensured by a condition monitoring system designed to maintain, monitor and forecast the reliability level of diesel generator. The purpose of this paper is to improve the existing ultrasonic sensor used for condition diagnosis of engine fuel pump and cylinder head for the accurate diagnosis in actual engine condition of emergency diesel generator(EDG). As a result of this study, we could design and develop much more reliable ultrasonic sensor than existing ones.

Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring (구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발)

  • Lim, Seung-Hyun;Lee, Jung-Ryul;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

The ultrasonic generator using inverter with class-E amplifier (E급 증폭기를 이용한 초음파발생장치)

  • Leem, Jong-Ye;Youn, Hee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.499-501
    • /
    • 1995
  • In this paper, the generation of the intensive ultrasonic waves depend mainly on the energy convention efficiency depending on high frequency oscillation of the generator and the control performance of stable output depending on iode variation. As a result, the ultrasonic generator obtained of 95% differency with 28khz.

  • PDF

Design and fabrication of driving generator for ultrasonic motors (초음파 모터 구동용 발진회로의 설계 및 제작)

  • 심성훈;백동수;윤석진;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.129-131
    • /
    • 1999
  • Driving generator of USMs(ultrasonic motors) with low noise, high efficiency was designed and fabricated. It was focused on merits such as size-reduction, thermal resistance, To control revolution speed, input frequency was varied. Output of generator had frequency range of 39.1 ∼ 43.5 MHz and voltage of 120 V. USM with resonant frequency 40.3 kHz exhibited a maximum torque of 2.5 kg $.$ cm and a maximum revolution speed of about 130 rpm.

  • PDF

SAFT Based Imaging and Centroid Technique for Classification of UT Signals from the Steam Generator of a Nuclear Power Plant

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.263-272
    • /
    • 2008
  • Many technical methods are used for nondestructive testing field for solid materials. Among those, ultrasonic inspection methods are widely used and one of the popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an approach which uses LMS method to determine the coordinates of the ultrasonic probe followed by the use of SAFT with centroid technique to estimate the location of the ultrasonic reflector. The method is employed for classifying UT-NDE signals from the steam generator tubes in a nuclear power plant. The classification results are presented for the ultrasonic signals from cracks and deposits within steam generator tubes.

A Study on Quantitative Flaw Evaluation of Nuclear Power Plant Steam Generator Tube by Ultrasonic Testing (초음파를 이용한 원자력발전소 증기발생기 전열관의 정략적 결함 평가에 관한 연구)

  • Yoon, Byung-Sik;Kim, Yong-Sik;Lee, Hee-Jong;Lee, Yong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2006
  • A steam generator of nuclear power plant has thousands of thin tubes. These tubes play an important role in maintaining the pressure boundary between the primary and secondary side of nuclear power plant. The steam generator tube is easy to be damaged because of the severe operating conditions such as the high temperature and pressure. Therefore, tremendous efforts are made to assess the structural integrity of the steam generator tubes. The eddy current test is the most popular non-destructive test to assess the integrity of the tubes. However, the eddy current test has the limitation to size the flaw accurately because the eddy current signal behavior depends on the total volume of flaw. This paper shows the possibility that the ultrasonic test method can be applied to detect the flaws in the steam generator tubes and to measure them quantitatively. From the test results, it is expected that if the ultrasonic test is put to practical use in the steam generator tube inspection, the inspection results will be improved.

Ultrasonic NDE Classifications with the Gradient Descent Method and Synthetic Aperture Focusing Technique

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.189-200
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an approach which uses LMS method to determine the coordinates of the ultrasonic probe followed by the use of SAFT to estimate the location of the ultrasonic reflector The method is employed for classifying NDE signals from the steam generator tubes in a nuclear power plant. The classification results using this scheme for the ultrasonic signals from cracks and deposits within steam generator tubes are presented.

Evaluation Technology for the Flaw Sizing of Generator Rotor by Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 발전기 로터 결점크기 평가)

  • Kim, Jin-Hoi;Park, Cher-Young;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • NDE(Nondestructive examination) detects a flaw or discontinuity in materials. Flaws detected by the examination shall be evaluated for the decision basis of the integrity. The internal flaws of forging products can be detected by UT. However, UT has detection limits because of its reflected signal weakness. Normally, a 1mm or less flaw is known as the limit. If a flaw was detected, the size of flaw would be evaluated by AVG(or DGS) technique. To verify the evaluation data, alternative examination methods are needed. But there is no alternative examination methods until now. In this study, Phased array ultrasonic technique can be used to size the flaws in the generator rotor with focused beam of ultrasonic wave as a supplement method of AVG. Also, the phased array ultrasonic technique described enables the shape of flaw to be depicted exactly.

  • PDF