• Title/Summary/Keyword: Ultrasonic frequency

검색결과 907건 처리시간 0.438초

다층 압전진동자를 이용한 주파수 가변 초음파 메스의 개발 (Frequency Controllable Ultrasonic knife and made by multi-layered PZT ultrasonic transducer)

  • 김무준;하강열
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.506-512
    • /
    • 1997
  • Ultrasonic knives have been successfully used for the surgery of many medical fields. However, the conventional ultrasonic knives for surgical operation cannot be controlled its resonant frequency. So if the material to cut has different characteristic impedance then different ultrasonic knife will be needed. Because the optimum driving frequency of ultrasonic knife is different by characteristic impedance of material. In this work, using a frequency variable ultrasonic transducer made of multi-layered PZT vibrator, a frequency controllable ultrasonic knife will be suggested. The design and computation principles will be also derived. For this work, firstly, the characteristics of this ultrasonic knife will be analyzed by transmission line model equivalent circuit, and the free admittance characteristics and vibrational velocity distributions will be obtained. Secondly, we will design and make the frequency controllable electrical oscillator for driving this ultrasonic knife.

  • PDF

음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성 (Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field)

  • 서현규
    • 한국분무공학회지
    • /
    • 제18권3호
    • /
    • pp.126-131
    • /
    • 2013
  • This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.

유한요소법을 이용한 초음파 진동 공구혼 설계에 관한 연구 (Design of Ultrasonic Vibration Tool Horn for Micromachining Using FEM)

  • 이봉구;김광래;김강은
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.63-70
    • /
    • 2008
  • Conical horn is used in many high frequency ultrasonic horns, to achieve a longitudinal vibration mode across a wide ultrasonic tool horn output surface. Modal analysis is method for designing tuned ultrasonic tool horn and for the prediction natural frequency of ultrasonic tool horn vibration mode. The design of ultrasonic horn is based on prototype estimate obtained by FEM analysis. The FEM simulated ultrasonic tool horn is built and characterized experimentally through laser vibrometer and electrical impedance analysis. In this paper, FEM analysis is developed to predict the natural frequency of ultrasonic tool horn and use of in the optimal design of ultrasonic horn shape.

초음파 광역 감쇠의 온도 특성에 관한 연구 (A Study on Temperature Features of Broadband Ultrasonic Attenuation)

  • 신정식;안중환;한승무;김형준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.245-248
    • /
    • 1997
  • The distilled water is used for the ultrasonic wave propagating material in the measurements of broadband ultrasonic attenuation (BUA) that is applied in industrial and medical applications, The acoustic impedance of water is significantly changed with its temperature. Therefore, the quantitative evaluation of BUA with temperature and the ultrasonic wave propagating distance is highly needed. In this study, we evaluated the variation of attenuation with change in temperature. To measure the variation of BUA in the low frequency region at the temperatures, 27$^{\circ}C$, 29$^{\circ}C$, and 31$^{\circ}C$, we tested the Plyethylene, Teflon, MC-Nylon, Urethane specimens and analyzed the center frequency, frequency bandwidth, spectral peak amplitude. The results showed that BUA value appeared to be lower with increasing temperature. This may be due to the fact that the frequency feature of ultrasonic wave is affected by not only the specific gravity, acoustic impedence, but material crystalline, porosity, the distance of ultrasonic wave propagation in water.

  • PDF

초음파 용접기 인버터의 공진 추종 방법에 관한 연구 (A Study on Resonance Tracking Method of Ultrasonic Welding Machine Inverter)

  • 문정훈;박성준;임상길;김동옥
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.481-490
    • /
    • 2021
  • In the ultrasonic welding machine, when the load fluctuates, the L and C of the piezo element in the oscillation part change. As a result, the resonant frequency is changed, so it is necessary to match the operating frequency of the ultrasonic welding machine to the new resonant frequency. That is, in order to maximize the output of the oscillation unit of the ultrasonic welding machine, it is inevitable to follow the resonance frequency. Accordingly, many methods for following the resonant frequency are being actively studied. In addition, in order to check the effect of external inductance on the operation of the ultrasonic welding machine, The equivalent circuit of the piezo element was analyzed by including the external inductance for resonance in the equivalent circuit of the piezo element, and the method of selecting an appropriate inductance was described. In this paper, we propose a new system that allows the switching frequency of the inverter to tracking the resonance frequency even if the resonance frequency is changed due to the load of the ultrasonic welding machine.

플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계 (2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding)

  • 하창용;이수일
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

5MHz 초과 초음파자극기에 대한 IEC 61689 규격 적용의 유효성에 관한 연구 (A Study on Effectiveness of Application of the IEC 61689 Standard to Ultrasonic Physiotherapy Systems with Frequency Range over 5MHz)

  • 윤주신;최기상
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권3호
    • /
    • pp.69-78
    • /
    • 2015
  • Ultrasonic physiotherapy systems should comply with IEC 60601-2-5(particular requirements for safety of ultrasonic physiotherapy equipment) standard for safety of patients and clinical performances. One of the most important parameters in the standard is the effective radiating area ($A_{ER}$). It has to be measured in accordance with IEC 61689 (field specifications and methods of measurement in the frequency range 0.5MHz to 5MHz). Typical ultrasonic physiotherapy system works in the frequency range 1MHz ~ 3MHz to comply with the IEC 61689. However, ultrasonic physiotherapy system using frequencies over 5MHz is out of the IEC 61689's scope. That is, even if such ultrasonic physiotherapy systems are developed by demands of the market, there is no standard to apply. It is the motivation for this study. Whereas there are other parameters to be considered, this study focuses on the effective radiating area and shows effectiveness of applying IEC 61689 in measuring effective radiating area of ultrasonic physiotherapy systems using frequency range over 5MHz by comparing the results of computer simulation and experiment. Results of this study shows that applying the IEC 61689 standard to ultrasonic physiotherapy system using frequency range over 5MHz is possible.

초음파 절단기에 의한 유리 절단면의 상태에 관한 실험적 검토 (Experimental Study on Cutting State of Glass by Ultrasonic Scriber)

  • 이채봉
    • 융합신호처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.212-216
    • /
    • 2005
  • 본 논문은 초음파를 이용한 유리 절단기를 개발하고 실험적으로 최적의 구동 주파수를 조사하였으며 유리 절단기의 효과에 대하여 검토하였다. 효과를 분석하기 위해 유리 절단기 시스템의 이론적 모델을 제시하였다. 그리고 시스템에서 최대 가속도 진폭의 주파수를 이론적으로 구하였다. 주어진 시료에 대해 절단면의 최대 깊이를 실험적으로 조사하였으며 사용한 시료는 석영유리($200mm(L){\times}30mm(W){\times}3mm(T)$)로 일정 가속도 진폭으로 모든 주파수에 대해 초음파 진동자를 구동하였다. 적정한 구동 주파수의 효과를 실험적으로 검토한 결과, 유리판에서 메디안 크랙의 깊이를 최대화하는 최적 주파수는 18.35kHz로 나타났다. 이러한 결과는 이론적 모델로 제시한 시스템의 계산 결과와 매우 일치하였다.

  • PDF

초음파 측정에 의한 베어링손상 평가 (Assessment of Bearing Damage by Ultrasonic Measurement)

  • 이상국;이인철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.395-400
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

  • PDF

Flexural Beam의 형태 변화에 따른 초음파 이송시스템의 동작특성에 관한 연구 (A Study on Motion Characteristics of the Ultrasonic Transporting System according to the change of Flexural Beam Shape)

  • 정상화;신병수;차경래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.696-699
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. There systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the object transport system using the excitation of ultrasonic wave is proposed. The experiments for finding the optimal excitation frequency, finding phase-difference between two ultrasonic wave generators are performed. The relationship of transporting speed according to the change of flexural beam shape is verified and the system performance for practical use is evaluated.

  • PDF