• Title/Summary/Keyword: Ultrasonic cutting

Search Result 84, Processing Time 0.026 seconds

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

Mirror Finishing of Co-Cr-Mo Alloy by Ultrasonic Elliptical Vibration Cutting Method (초음파타원진동절삭가공법에 의한 Co-Cr-Mo 합금의 경면가공)

  • Song, Young-Chan;Tanaka, Kenichi;Moriwaki, Toshinmichi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.56-62
    • /
    • 2008
  • The biocompatibility and the fatigue strength of Co-Cr-Mo alloy are excellent, so it is used well for the material of artificial joints. The head of artificial joint needs mirror surface for reduction of abrasive resistance. Mirror finishing of Co-Cr-Mo alloy with geometrically defined single crystal diamond cutting tools is handicapped by micro chipping of tool edge. In general, it is said that the micro chipping of diamond tool is caused by work hardening of Co-Cr-Mo alloy for the cut. In the present research, mirror finishing of Co-Cr-Mo alloy by applying ultrasonic elliptical vibration cutting was carried out. The experimental results show that the micro chipping of diamond tool was suppressed and the tool wear was remarkably reduced as compared with the ordinary diamond cutting without elliptical vibration motion. It was confirmed that the good mirror surface of maximum surface roughness of 25 nmP-V was obtained for the cutting length of about 14 m. It is expected that mirror finishing of Co-Cr-Mo alloy can be achieved by applying ultrasonic elliptical vibration cutting practically.

A study on the ultrasonic vibration cutting properties of fine ceramics (파인 세라믹스의 초음파 진동절삭에 관한 연구)

  • Kang, Jong-Pyo;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.126-133
    • /
    • 1993
  • Conventional cutting(CC) and Ultrasonic Vibration Cutting(UVC) of 20[KHz] are practised with standard lathe for fine ceramics(A1$_{2}$O$_{3}$. UVC is suggested to good cutting method for difficult-to-machine-materials and it is known to excellent cutting method to super precision cutting and elevation of productibility for general, nonferrous matals. In this research, main results to be obtained are as follows: 1. From the CC and UVC results by general lathe with sintering diamond tool, the surface roughness and roundness are improved in UVC. Also tool life is longer in UVC than CC. From the observation of machined surface, it is found that brittle fracutural material remove occured in fine ceramics cutting. 2. It is verified that the thrust force is the biggest in fine ceramics cutting, principal force is the next, and feed rate force the third and it is appear a little, on the other hand the principal force is the biggest in metal cutting, feed rate frece is the second, and thrust force is the next.

  • PDF

A Study on the applicability of ultrasonic knife for processing CFRTP materials (CFRTP 소재 가공을 위한 초음파 나이프 적용 가능성에 관한 연구)

  • Ki-Hyeok Song;Hye-Jin Kim;Ji-young Park;Si-Myung Sung
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this study, an experiment was conducted to confirm the applicability of the external shape control of the ultrasonic knife to the CFRTP material, which is the base material of thermoplastic. TC910 based on polyamide6 (PA6) was used as the material. The slope 와 and tool transfer speed of the material and tool were selected as process factors for processing, and the following results were obtained. Under all cutting conditions using an ultrasonic knife, friction heat caused by high-frequency vibration was issued at 150℃ at the contact part between the material and the knife during cutting. As a result of the cutting force analysis, the faster the transfer speed, the higher the cutting force as the angle of entry of the blade increased, and the size of the cutting force changed during cutting. As for the size of the burr in accordance with the transfer speed condition, the smallest burr occurred at 150mm/min in the side part, and the smallest burr occurred at 150mm/min and 200mm/min in the case of the outlet burr. The size of the burr according to the entry angle tended to decrease as the tool entry angle increased, and the side part tended to increase as the tool entry angle increased. As a result of the cutting surface analysis, it was confirmed that the base material was eluted under all conditions, and the faster the transfer speed, the lower the elution phenomenon of the base material. Based on the above results, cutting the CFRTP material with an ultrasonic knife is possible, but the effect on heat generation caused by friction needs to be minimized, and further research needs to be conducted on this.

Effect of Feedrate and Specimen Shape on Cutting Force and Surface Roughness of Ultrasonic Dental Surgical Instrument (치과용 초음파 수술기의 이송속도 및 시편형상이 절삭반력과 표면거칠기에 미치는 영향)

  • Sang Ho Kim;Seung Han Yang;Joong Ho Lee;Jong Kyun Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.109-117
    • /
    • 2023
  • In this study, the effect of the shape of the specimen and the feedrate of the dental ultrasonic surgical instrument on the cutting force and surface roughness of the specimen is analyzed. Experimental specimens were made of SAWBONES artificial bone materials in square and spherical specimens. In addition, the cutting feedrate of the surgical instrument was controlled through the developed moving system. The cutting force generated when cutting the specimen was measured through a force sensor. After the experiment, the cutting surface of the specimen was observed through a three-dimensional optical microscope and the surface roughness was measured. Through one-way ANOVA, the effect of each specimen shape and feed rate on surface roughness was analyzed. As a result of the experiment, the cutting force increased proportionally in the initial feed rate increase stage, but the increase in cutting force decreased as the feed rate continued to increase. Also, the cutting force showed a difference according to the shape of the specimen. The spherical specimen with a relatively small cutting surface area had less cutting force than the square specimen. However, as a result of one-way ANOVA, it was found that the specimen shape and feed rate did not affect the surface roughness. In future studies, it is expected to be used for comparative analysis of ultrasonic surgical instruments and correlation analysis between cutting factors.

A Study on Ultrasonic Vibration Cutting of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 초음파 진동절삭에 관한 연구)

  • 김정두;이은상;최인휴
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 1994
  • The main applications of CFRP are sports, aerospace and general industrial uses including automobiles. As this application fields expands the opportunity of machining, but CFRP is difficult to cut because of delamination of the composites and the short tool life. In this paper, the machinability of multidirectional CFRP by means of ultrasonic vibration cutting, which has been verified experimentally investigated.The experimentally to be highly effective in view of cutting force and surface quality.

A Study about Experimental Evaluation of an Ultrasonic Surgery Unit for Bone-cutting (골 절삭용 초음파 수술기의 실험적 평가에 관한 연구)

  • Sa, Min-Woo;Shim, Hae-Ri;Ko, Tae-Jo;Lee, Jong-Min;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In the dentistry field, an ultrasonic surgery unit is widely used in bone cutting and scaling to reduce operation time and minimize hemorrhage. The purpose of this study was to evaluate bone cutting and the effect of a specimen's temperature on the two-type ultrasonic surgery unit using a handpiece moving system(HMS). A HMS, which can cut the bone, was developed to perform the experimental procedure with precision of motion control. Bone specimens were prepared from a combination of epoxy-hardener and cortical bone of bovine leg. Through the bone-cutting experiment, the cutting depth was evaluated by not only scanning electron microscopy, but also Vernier calipers. Also, the temperature distribution was measured by a thermo-graphic camera. This study may be applied methodically in various experimental evaluations on a performance test by a HMS.

Evaluation of Ultrasonic Vibration Cutting while Machining Inconel 718

  • Nath, Chandra;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Hard and brittle materials, such as Ni- and Ti-based alloys, glass, and ceramics, are very useful in aerospace, marine, electronics, and high-temperature applications because of their extremely versatile mechanical and chemical properties. One Ni-based alloy, Inconel 718, is a precipitation-hardenable material designed with exceptionally high yield strength, ultimate tensile strength, elastic modulus, and corrosion resistance with outstanding weldability and excellent creep-rupture properties at moderately high temperatures. However, conventional machining of this alloy presents a challenge to industry. Ultrasonic vibration cutting (UVC) has recently been used to cut this difficult-to-machine material and obtain a high quality surface finish. This paper describes an experimental study of the UVC parameters for Inconel 718, including the cutting force components, tool wear, chip formation, and surface roughness over a range of cutting conditions. A comparison was also made between conventional turning (CT) and UVC using scanning electron microscopy observations of tool wear. The tool wear measured during UVC at low cutting speeds was lower than CT. UVC resulted in better surface finishes compared to CT under the same cutting conditions. Therefore, UVC performed better than CT at low cutting speeds for all measures compared.

Prediction of Crack Initiation and Design of 40kHz Blade Horn for Ultrasonic Cutting (40kHz 초음파 커팅용 혼의 설계와 크랙발생에 대한 고찰)

  • Seo, Jeong-Seok;Lee, Yoon-Jung;Beak, Si-Young;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.784-789
    • /
    • 2012
  • Ultrasonic Cutting which uses a tuned blade resonant in a longitudinal mode, has been used to cut a range of materials from confectionery, baked products and frozen foods, to wood, bone, foams and composites. The Blade design typically uses finite element analysis, and it could be predicted vibration mode, gain and amplitude uniformity of the blade tip at resonant frequency. In this paper, FEA used to predict the vibration characteristic of the blade, and then the results were verified by analysis system of resonant frequency using the processed blade. The crack of the blade which is predicted from FEA was compared with the crack occurred by cutting experiment of rubber materials using the processed blade.