• Title/Summary/Keyword: Ultrasonic Technique

Search Result 760, Processing Time 0.022 seconds

Computational mechanics and optimization-based prediction of grain orientation in anisotropic media using ultrasonic response

  • Kim, Munsung;Moon, Seongin;Kang, To;Kim, Kyongmo;Song, Sung-Jin;Suh, Myungwon;Suhr, Jonghwan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1846-1857
    • /
    • 2021
  • Ultrasonic nondestructive testing is important for monitoring the structural integrity of dissimilar metal welds (DMWs) in pressure vessels and piping in nuclear power plants. However, there is a low probability of crack detection via inspection of DMWs using ultrasonic waves because the grain structures (grain orientations) of the weld area cause distortion and splitting of ultrasonic beams propagating in anisotropic media. To overcome this issue, the grain orientation should be known, and a precise ultrasonic wave simulation technique in anisotropic media is required to model the distortion and splitting of the waves accurately. In this study, a method for nondestructive prediction of the DMW grain orientations is presented for accurate simulation of ultrasonic wave propagation behavior in the weld area. The ultrasonic wave propagation behavior in anisotropic media is simulated via finite-element analysis when ultrasonic waves propagate in a transversely isotropic material. In addition, a methodology to predict the DMW grain orientation is proposed that employs a simulation technique for ultrasonic wave propagation behavior calculation and an optimization technique. The simulated ultrasonic wave behaviors with the grain orientations predicted via the proposed method demonstrate its usefulness. Moreover, the method can be used to determine the focal law in DMWs.

토양의 종류에 따른 초음파토양세척의 투수특성 분석

  • 정하익;송봉준;이용수;유준;강동우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.258-261
    • /
    • 2004
  • In this study, the combined electrokinetic and ultrasonic remediation technique onto simple soil flushing was studied for the enhancement of water and liquid flows and the removal of contaminants in contaminated soils. The ultrasonic technique has been used to increase liquid flow and remove pollutants in contaminated soil. The laboratory soil flushing tests combined electrokinetic and ultrasonic technique were conducted using specially designed and fabricated devices to determine the effect of these both techniques. A series of laboratory permeability experiments involving the simple, electrokinetic, ultrasonic, and electrokinetic & ultrasonic flushing test were carried out. A soil admixed with sand and kaolin was used as a test specimen, and Pb and ethylene glycol were used as contaminants. An increase in out flow, permeability and contaminant removal rate was observed in electrokinetic and ultrasonic flushing tests.

  • PDF

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

Removal of Heavy Metal and Organic Substance in Contaminated Soils by Electrokinetic and Ultrasonic Remediation (동전기 및 초음파 복원기술에 의한 오염지반내의 중금속 및 유기오염물질 제거)

  • Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 2003
  • The electrokinetic technique has been applied to remove mainly the heavy metal and the ultrasonic technique to remove mainly organic substance in contaminated soil. In this study, the combined electrokinetic and ultrasonic remediation technique was studied far the removal of heavy metal and organic substance in contaminated soils. This study emphasized the coupled effects of electrokinetic and ultrasonic techniques on migration as well as remediation of contaminants in soils. The laboratory soil flushing tests combining electrokinetic and ultrasonic technique were conducted using specially designed and fabricated devices to determine the effect of both of these techniques. A series of laboratory experiments involving the simple, electrokinetic, ultrasonic, and electrokinetic & ultrasonic flushing test were carried out. A soil admixed with sand and kaolin was used as a test specimen, and Pb and ethylene glycol were used as contaminants of heavy metal and organic substance. An increase in out flow, permeability and contaminant removal rate was observed in electrokinetic and ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of electrokinetic ultrasonic remediation technique.

Experimental Characterization of Cyclic Deformation in Copper Using Ultrasonic Nonlinearity

  • Kim, C.S.;Park, Ik-Keun;Jhang, Kyung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.285-291
    • /
    • 2008
  • We have experimentally investigated the cyclic deformation in copper using ultrasonic nonlinearity. The observation and characterization of dislocation substructure have been conducted using transmission electron microscope and electron backscattered diffraction technique. The ultrasonic nonlinearity (${\beta}/{\beta}_0$) was measured by the harmonic generation technique after various fatigue cycles. The microstructural effect on the nonlinearity was discussed regarding the extent of dislocation substructures evolved from low cycle fatigue. The ultrasonic nonlinearity of copper monotonically increased with the fatigue cycles due to the evolution of dislocation cell substructures.

Field Inspection of Phase-Array Ultrasonic for PolyEthylene Electrofusion Joints

  • Kil, Seong-Hee;Jo, Young-Do;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.22-25
    • /
    • 2012
  • Welding and/or fusion in polyethylene(PE) system made on site is focused on the control of the welding or fusion process to follow proper procedure. The process control is important, but it is not sufficient for the long term reliability of a pipe system. To achieve the rate of failure close to zero, Non Destructive Testing(NDT) is necessary in addition to joining process control. For electrofusion joints several non-destructive testing methods are available. The ultrasonic phased array technique is possible to detect various defects including wire deviations and regions with lack of fusion. In this studies, testing was carried to detect the defect after electrofusion joining of polyethylene piping is utilized by the ultrasonic phased array technique. From testing data, ultrasonic phased array technique is recommended as a reliable non-destructive testing method.

Ultrasonic ranging technique for obstacle monitoring above reactor core in prototype generation IV sodium-cooled fast reactor

  • Kim, Hoe-Woong;Joo, Young-Sang;Park, Sang-Jin;Kim, Sung-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.776-783
    • /
    • 2020
  • As the refueling of a sodium-cooled fast reactor is conducted by rotating part of the reactor head without opening it, the monitoring of existing obstacles that can disturb the rotation of the reactor head is one of the most important issues. This paper deals with the ultrasonic ranging technique that directly monitors the existence of possible obstacles located in a lateral gap between the upper internal structure and the reactor core in a prototype generation IV sodium-cooled fast reactor (PGSFR). A 10 m long plate-type ultrasonic waveguide sensor, whose feasibility has been successfully demonstrated through preliminary tests, was employed for the ultrasonic ranging technique. The design of the sensor's wave radiating section was modified to improve the radiation performance, and the radiated field was investigated through beam profile measurements. A test facility simulating the lower part of the upper internal structure and the upper part of the reactor core with the same shapes and sizes as those in the PGSFR was newly constructed. Several under-water performance tests were then carried out at room temperature to investigate the applicability of the developed ranging technique using the plate-type ultrasonic waveguide sensor with the actual geometry of the PGSFR's internal structures.

A Study on the Recognizing Range Expansion Techniques of the Ultrasonic Location Awareness System for the Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 초음파 위치인식 시스템의 인식영역 확장 기법에 관한 연구)

  • Park Jong-Jin;Lee Dong-Hwal;Kim Su-Yong;Mun Young-Song
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7B
    • /
    • pp.595-601
    • /
    • 2006
  • This study presents an ultrasonic location awareness system for the ubiquitous computing with absolute position. The flight time of ultrasonic waves is determined by a period detecting technique which is able to extend the sensing range compared with traditional methods. For location awareness, ultrasonic waves are sent successively from each ultrasonic transmitter and synchronized by radio frequency (RF) signal, where the transmitting part is fixed and the receiving part is movable. To expand the recognizing range, cell matching technique and coded ultrasonic technique are introduced. The experimentation for various distances is accomplished to verify the used period detecting technique of U-SAT system. The positioning accuracy by using cell matching is also verified by finding the locations of settled points and the usability of coded ultrasonic technique is verified. As a result, the possibility of ultrasonic location awareness system for the ubiquitous computing can be discussed as a pseudo-satellite system with low cost, a high update rate, and relatively high precision, in the places where GPS is not available.

Studies on the Correlation between Mechanical Properties and Ultrasonic Parameters of Aging 1Cr-1Mo-0.25V Steel

  • Seok Chang-Sung;Kim Jeong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.487-495
    • /
    • 2005
  • Mechanical properties of in-service facilities are required to evaluate the integrity of power plants and chemical plants. Non-destructive technique can be used to evaluate the mechanical properties. To investigate the mechanical properties using ultrasonic technique, the four classes of thermally aged specimens were prepared using an artificially accelerated aging method. Ultrasonic tests, tensile tests, fracture toughness tests, and hardness tests were performed for the specimens. Then the mechanical properties were compared with ultrasonic parameters such as attenuation and non-linear parameter. From the investigation, we confirm that the ultrasonic parameter can be used to evaluate the mechanical properties.

Evaluation of Laser-based Ultrasonic Signals due to Fiber Orientation of CFRP (CFRP의 섬유강화재 배향성에 따른 레이저유도초음파 신호특성 평가)

  • Choi Sang-Woo;Lee Joon-Hyun;Byun Joon-Hyung;Seo Kyeong-Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate FRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluated the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation.

  • PDF