• Title/Summary/Keyword: Ultrasonic Signal Processing

Search Result 176, Processing Time 0.028 seconds

Experimental Study on Cutting State of Glass by Ultrasonic Scriber (초음파 절단기에 의한 유리 절단면의 상태에 관한 실험적 검토)

  • Lee Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.4
    • /
    • pp.212-216
    • /
    • 2005
  • In an ultrasonic glass scriber, the effect of ultrasonic vibration and its optimum driving frequency were investigated experimentally. To investigate the optimum ultrasonic frequency theoretically, the vibration model of the ultrasonic scriber is assumed. The frequency for maximum amplitude of acceleration is obtained theoretically. To investigate the depth of cutting edge corresponding the each frequency. The quartz glass plate specimen with a dimension of $200mm(L){\times}30mm(W){\times}3mm(T)$ is selected. The ultrasonic transducer is operated by the constant acceleration amplitude for the every frequency. The maximum crack depth was generated when the driving frequency was 18.35kHz. These results were in good agreement with those of the calculated model theoretically.

  • PDF

A Study on the Improvement in Performance of Ultrasonic Pulsed Doppler Velocimeter (초음파 펄스 도플러 속도계의 성능 개선에 관한 연구)

  • 이은방;이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.3
    • /
    • pp.85-95
    • /
    • 1996
  • In the velocimeter, the ultrasonic pulse signal is used for measuring the profile velocity of moving targets distributed in space because of the merits of its high distance resolution and harmless affect to the human body. The velocity reading in conventional ultrasonic pulsed velocimeter depends on the wave pattern reflecting the spatial distribution of scatters and includes observational error due to the signal processing of analyzing pulse signal. In this paper, we evaluate an influence of the received waveform of pulsed signal on the velocity information by setting a model. Subsequently, in order to improve the distance resolution and to obtain precise velocity information without the influence of the spatial distribution of scatterers, we propose a new method for the analysis of Doppler pulsed signal, in which the pulsed signal is transformed into a phase function with local data. Finally, it is confirmed that the performance of the velocimeter is more improved in the proposed method than in the conventional one.

  • PDF

A Study on Hybrid Split-Spectrum Processing Technique for Enhanced Reliability in Ultrasonic Signal Analysis (초음파 신호 해석의 신뢰도 개선을 위한 하이브리드 스플릿-스펙트럼 신호 처리 기술에 관한 연구)

  • Huh, H.;Koo, K.M.;Kim, G.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Many signal-processing techniques have been found to be useful in ultrasonic and nondestructive evaluation. Among the most popular techniques are signal averaging, spatial compounding, matched filters and homomorphic processing. One of the significant new process is split-spectrum processing(SSP), which can be equally useful in signal-to-noise ratio(SNR) improvement and grain characterization in several specimens. The purpose of this paper is to explore the utility of SSP in ultrasonic NDE. A wide variety of engineering problems are reviewed, and suggestions for implementation of the technique are provided. SSP uses the frequency-dependent response of the interfering coherent noise produced by unresolvable scatters in the resolution range cell of a transducer. It is implemented by splitting the frequency spectrum of the received signal by using gaussian bandpass filter. The theoretical basis for the potential of SSP for grain characterization in SUS 304 material is discussed, and some experimental evidence for the feasibility of the approach is presented. Results of SNR enhancement in signals obtained from real four samples of SUS 304. The influence of various processing parameters on the performance of the processing technique is also discussed. The minimization algorithm, which provides an excellent SNR enhancement when used either in conjunction with other SSP algorithms like polarity-check or by itself, is also presented.

  • PDF

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

Implementation of An Automated Ultrasonic Flaw Imaging System for the Inspection of Pipe Welding (배관 용접부 자동 초음파 결함 영상 보정 시스템 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Cheol-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. The automated ultrasonic testing system developed in the present study adopted an 8 channel pulser/receiver-ADC unit and a 2 axis motion driving unit and the post signal and image processing algorithms are built into the system program of the automated ultrasonic testing system.

  • PDF

A Study on the Bit-slice Signal Processor for the Biological Signal Processing (생체 신호처리용 Bit-slice Signal Processor에 관한 연구)

  • Kim, Yeong-Ho;Kim, Dong-Rok;Min, Byeong-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 1985
  • We have developed a microprogramir!able signal processor for real-time ultrasonic signal processing. Processing speed was increased by the parallelism in horizontal microprogram using 104bits microcode and the Pipelined architecture. Control unit of the signal processor was designed by microprogrammed architec- ture and writable control store (WCS) which was interfaced with host computer, APPLE- ll . This enables the processor to develop and simulate various digital signal processing algorithms. The performance of the processor was evaluated by the Fast Fourier Transform (FFT) program. The execution time to perform 16 bit 1024 points complex FF7, radix-2 DIT algorithm, was about 175 msec with IMHz master Clock. We can use this processor to Bevelop more efficient signal processing algorithms on the biological signal processing.

  • PDF

Strength Evaluation of Adhesively Bonded Single-Lap Joints by Ultrasonic Signal Analysis (초음파신호해석을 이용한 단순겹치기 접착이음의 강도평가)

  • Oh Seung-Kyu;Jang Chul-Sub;Han Jun-Young;Lee Won
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.32-37
    • /
    • 2004
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as aeronautical and space, automobile and electronics industries. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This article discusses the use of pulse-echo ultrasonic testing for the inspection of adhesive bonds between metal sheets. The method is based on the measurement of the reflection coefficient at the metal/adhesive interface. By means of a control experiment it is shown that Quantitative Nondestructive Evaluation in Adhesive Joints are evaluated together with Ultrasonic Testing and Fracture Testing.

Ultrasonic C-scan System Development Using DSP (DSP 를 이용한 초음파 C-scan 시스템 개발)

  • Nam, Young-Hyun;Seong, Un-Hak;Kim, Jeong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.32-39
    • /
    • 1999
  • Digital signal processor (DSP) is used to obtain the peak value and the time difference of ultrasonic signals, to make digital filter, and to derive mathematical transformation from analog circuit. In this study, C-scan system and control program have been developed to high speed data acquisition. This system consists of signal processing parts (DSP, oscilloscope, pulser/receiver, digitizer), scanner, and control program. The developed system has been applied to a practical ultrasonic testing in overlay weld, and demonstrated high speed with precision

  • PDF

A Technique for Measuring Ship's Draught by ultrasonic Pulse Signal

  • Lee, Eun-Bang;Lee, Sang-Jib
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1995.11a
    • /
    • pp.184-192
    • /
    • 1995
  • Although ship's draught information onboard is substantial for both the safety of navigation and the estimation of loaded cargoes its accuracy depends in traditional surveying method on the skillfulness of observers and the condition of the sea surface round the vessel. To obtain more accurate information accessibly measuring instruments with sophisticated sensors such as mechanical electronic and ultrasonic transducers have been developed. however they have still limitation in accuracy and in making up a system due to the complexity of processing signal. In this paper we propose a he technique for analyzing ultrasonic pulse signal in order to improve the measurement accuracy and simplify a remote sensing system of draught by ultrasonic waves. This technique is useful for measuring draught being considered the influence of sea surface fluctuation and for transferring its data briefly to required equipment in integrated bridge system.

  • PDF

Design of Overlapped Ultrasonic Sensor Ring and Its Application to Obstacle Detection (중첩 초음파 센서 링의 설계 및 장애물 탐지에의 응용)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • This paper presents the optimal design method of an overlapped ultrasonic sensor ring for reduced positional uncertainty, and its application to the obstacle detection with improved resolution. Basically, it is assumed that a set of ultrasonic sensors are installed to form a circle at regular intervals with their beams overlapped. First, exploiting the overlapped beam pattern, the positional uncertainty inherent to an ultrasonic sensor is shown to be significantly reduced. Second, for an ideal ultrasonic sensor ring of zero radius, the effective beam width is defined to represent the positional uncertainty, and the optimal number of ultrasonic sensors required for minimal effective beam width is obtained. Third, for an actual ultrasonic sensor ring of nonzero radius, the design index is defined to represent the degree of positional uncertainty, and an optimal design of an overlapped ultrasonic sensor ring consisting of commercial ultrasonic sensors with low directivity is given. Fourth, given measured distances from ultrasonic sensors, the geometric method is described to compute the obstacle position with reference to the center of a mobile robot. Finally, through experiments using our overlapped ultrasonic sensor ring prototype, the validity and performance of the proposed method is demonstrated.