• Title/Summary/Keyword: Ultrasonic Signal

Search Result 638, Processing Time 0.024 seconds

Feature Extraction of Ultrasonic Signal due to Form of Defect in Solids (고체내부에 존재하는 결함의 형태에 따른 초음파 신호의 특징 추출)

  • 문상택
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.169-173
    • /
    • 1993
  • In this paper, the features extraction of reflected signals from various type of defects existing in the solid has been studied by Wiener filtering technique. In this experiment, three types of the defect have been considered; a flat cut, a angular cut and a circular hole. All of the defects have the same size, 20mm in diameter and have been located at 45mm in depth from the aluminum surface. In the result of the experiment, it has been found that the wiener filtering technique used for features extraction from the reflected signal corresponding to each defect have been very effective for defect classification.

  • PDF

Performance Comparison of Welding Flaws Classification using Ultrasonic Nondestructive Inspection Technique (초음파 비파괴 검사기법에 의한 용접결함 분류성능 비교)

  • 김재열;유신;김창현;송경석;양동조;김유홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.280-285
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself. Through this process, we comfirmed advantages/disadvantages of four algorithms and identified application methods of four algorithms.

  • PDF

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

The Feature Extraction of Welding Flaw for Shape Recognition (용접결함의 형상인식을 위한 특징추출)

  • Kim, Jae-Yeol;You, Sin;Kim, Chang-Hyun;Song, Kyung-Seok;Yang, Dong-Jo;Lee, Chang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

Basic Study for the Development of Laser Doppler Vibrometer for the Detection c (초음파 측정용 레이저 도플러 진동계의 개발에 관한 기초연구)

  • Kim, Myoung-Sun;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2434-2437
    • /
    • 1999
  • In order to detect the ultrasonic that is generated by the partial discharge of the heavy electric machinery, a Laser Doppler Vibrometer (LDV) was developed. A Michelson type interferometer which employed heterodyne signal process technique was built to measure the frequency and amplitude of vibration. The output signal of the fast photodetector was a frequency modulated signal centered at 40 MHz. The signal from the detector was amplified and downconverted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that was proportional to the velocity of the moving surface(PZT) was obtained using PLL. The spectrum of the FM signal was analyzed and integration method was introduced to obtain amplitude information. This LDV can be used to measure the vibration of MEMS devices, automobiles, HDD and CDP.

  • PDF

Availability Verification of Feature Variables for Pattern Classification on Weld Flaws (용접결함의 패턴분류를 위한 특징변수 유효성 검증)

  • Kim, Chang-Hyun;Kim, Jae-Yeol;Yu, Hong-Yeon;Hong, Sung-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.62-70
    • /
    • 2007
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

Improvement of an Ultrasonic Transducer for Measuring Both Flow Velocity and Pipe Thickness (유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서 개선)

  • Kim, Ju Wan;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • The paper deals with improvement of a piezoelectric ultrasonic transducer for measuring both pipe thickness and flow velocity. The transducer structure is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer invented earlier for measuring flow velocity and pipe thickness had an advantage of including only one piezoelectric disc, but for the thickness measurement the ultrasonic wave had to be reflected twice in a wedge material to be transmitted vertically to a pipe, and thus the wave signal was too weak. The transducer has been improved to transmit waves for thickness measurement vertically to a pipe without any prior reflection by electrically connecting two piezoelectric discs, one for flow velocity and the other for pipe thickness measurement. By comparing the measured results of specimen thickness with the improved transducer and conventional transducers, the accuracies of the improved one have been evaluated in the pipe thickness measurements.

Development of Obstacle Recognition System Using Ultrasonic Sensor (초음파 센서를 이용한 장애물 인식 장치 개발)

  • Yu, Byeonggu;Kwon, Sunwook;Kim, Jusung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • In this Paper, we Propose the Low-cost Obstacle Recognition System Utilizing the Ultrasonic Sensor. Developed Obstacle Recognition System can be used to Aid the Visually Impaired Person. The Existence of the Obstacle is Notified to the Person through the Embodied Electronic Vibration Motor. The Timing Difference from the Recognition to the Notification Indicates the Distance to the Obstacle. Pulsed Ultrasonic Signal Controlled by MCU is Utilized and the Reflected Pulse through the Obstacle gives the Developed System the Existence of the Obstacle and the Distance to the Object. Pulse is sent Repetitively to Improve the Detection Accuracy. Developed Apparatus gives 30 Degree of Detection Angle and 2cm-30cm of the Detection Range when the Apparatus is Tested under Normal Walking Environment.

UT Inspection Technique of Cast Stainless Steel Piping Welds Using Low Frequency TRL UT Probe (저주파수 TRL 탐촉자를 이용한 Cast Stainless Steel 배관 용접부 초음파탐상기법)

  • Shin, Keon-Cheol;Chang, Hee-Jun;Jeong, Young-Cheol;Noh, Ik-Jun;Lee, Dong-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • Ultrasonic inspection of heavy walled cast austenitic stainless steel(CASS)welds is very difficult due to complex and coarse grained structure of CASS material. The large size of anisotropic grain strongly affects the propagation of ultrasound by severe attenuation, change in velocity, and scattering of ultrasonic energy. therefore, the signal patterns originated from flaws can be difficult to distinguish from scattered signals. To improve detection and sizing capability of ID connected defect for heavy walled CASS piping welds, the low frequency segmented TRL Pulse Echo and Phased Array probe has been developed. The experimental studies have been performed using CASS pipe mock-up block containing artificial reflectors(ID connected EDM notch). The automatic pulse echo and phase array technique is applied the detection and the length sizing of the ID connected artificial reflectors and the results for detection and sizing has been compared respectively. The goal of this study is to assess a newly developed ultrasonic probe to improve the detection ability and the sizing of the crack in coarse-grained CASS components.

  • PDF

A Study on the Evaluation of Material Degradation of 1Cr-lMo-0.25V Steel using Ultrasonic Techniques (초음파법을 이용한 1Cr-lMo-0.25V강의 열화도 평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2116-2124
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this studdy the four classes of the thermally aged 1Cr-lMo-0.25V specimens were prepared using an artificially accelerated aging method at 630$\^{C}$. Ultrasonic tests, tensile tests, K$\_$IC/ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter derived from the harmonic generation level is sensitive and will be a good parameter to evaluate the material degradation.